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Complete Gauge Fixing
Randy S

Abstract Articles 51376 and 89053 describe ways to construct
models involving quantum gauge fields when space or spacetime is
treated as a lattice. In those models, the gauge field is described as
a collection of G-valued link variables, one for each directed link
in the lattice, where G is the gauged group. The collection of link
variables used in those constructions is overcomplete: the same model
(on the same lattice) can be described using only a subset of the link
variables. This article explains how to choose a subset that is just
barely complete. This is a type of gauge fixing. Important special
cases of this type of gauge fixing include the temporal gauge and the
axial gauge (after extending them slightly so that only a minimal
complete set of link variables remains). This type of gauge fixing
can be useful for understanding a model’s general properties. Gauge
fixing is also a prerequisite for defining small-coupling expansions.
This article also shows that even after complete gauge fixing, some
zero modes may remain.
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1 Points and links

This section describes a general framework that includes the space(time) lattices
used in articles 51376 and 89053 as special cases.

An (undirected) graph Γ = (P, L̃) consists of a set P of points1 and a set L̃
of (undirected) links2 Each link {x, y} ∈ L̃ is an unordered pair of points x and
y with x 6= y.3 We can think of a lattice as a special type of graph, one whose
points P are all generated from a single point by adding integer multiples of the
basis vectors ek.

4

A directed link is an ordered pair (x, y) of points. For each undirected link
{x, y}, we can define two corresponding directed links, (x, y) and (y, x). The set
of all directed links corresponding to the undirected links in L̃ will be denoted L.
Both directions are included, so if (x, y) ∈ L, then (y, x) ∈ L. In this article, the
word link without any qualifiers means undirected link.

A graph is called finite if the number of points in P is finite. A graph is called
connected if L̃ cannot be partitioned into two subsets whose links don’t share any
points with each other. In this article, graphs are always assumed to be finite and
connected.

Every point in P should be used in at least one link in L̃. A point in P that
belongs to only one link in L̃ will be called a boundary point.5 Other points will
be called interior points.

1This language alludes to typical applications in lattice quantum field theory (like in article 51376) where the
points P form a lattice and the links represent nearest-neighbor pairs of points in the lattice.

2In the literature about graph theory, a point is usually called a vertex, and a link is usually called an edge.
3Pairs of the form {x, x} are not allowed in this article.
4The bottom of page 63 in Harlow and Ooguri (2018) clarifies this use of the word lattice.
5Article 51376
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2 Configurations and gauge transformations

Let G be the gauged group (a compact Lie group), and let 1 denote the identity
element of G. If u is a map from L to G, then the value (the element of G) that u
assigns to a link ` = (x, y) ∈ L will be denoted either u(`) or u(x, y). A map with
the property

u(y, x) =
(
u(x, y)

)−1

will be called a configuration. A configuration will be called trivial on the link
{x, y} if `(x, y) = 1.

Let h denote any map from P to G. Given any configuration u with values in
G, we can define a new configuration uh by

uh(x, y) ≡ h(x)u(x, y)
(
h(y)

)−1
. (1)

The transformation u→ uh is called a gauge transformation. A gauge transfor-
mation will be called trivial at the point x if h(x) = 1.

In models with gauge fields, observables are required to be invariant under
gauge transformations, or at least under gauge transformations that are trivial at
all boundary points. This implies that the set of link variables is overcomplete,
because gauge transformations may be used to change some of the link variable
values to 1 without changing any observables. This article explains how to choose a
minimal complete set of link variables and how to construct a gauge transformation
that changes the values of all the other link variables to 1.

Choosing a gauge (also called gauge fixing) means choosing a condition
that each configuration of the gauge field can be made to satisfy by applying the
right gauge transformation, and then considering only configurations that satisfy
that condition. In this article, the condition is that all the link variables outside
the given minimal complete set are equal to 1.
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3 The concept of a maximal tree

Given a graph Γ = (P, L̃), a tree is a subset of L̃ that doesn’t have any closed
loops. Any finite connected undirected graph Γ = (P, L̃) has a maximal tree,6

which is a subset T ⊂ L̃ such that any two points in P are connected to each other
by exactly one path (connected series of links) in T . A maximal tree T has these
properties:

• It doesn’t have any loops, because any two points in P are connected by only
one path in T .

• Adding any other link in L̃ to T would create a loop, because that link’s
endpoints are already connected by a path in T .

This picture shows an example of a maximal tree for the graph (P, L̃), where P is
a three-dimensional grid of points of size 3 × 5 × 5 and L̃ consists of all nearest-
neighbor pairs of points: article

2

Each solid line segment represents a link in the maximal tree.

6Montvay and Münster (1997), end of section 3.2.5
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4 Gauge fixing on a maximal tree

Given a graph Γ = (P, L̃), a configuration of the gauge field, and a maximal tree
T ⊂ L̃, this section constructs a gauge transformation that makes u(`) = 1 for
every link ` in the maximal tree. This would not be possible for any larger subset
of L̃, because any larger subset would have at least one loop, and configurations
of the gauge field exist for which the product of link variables around a given loop
(regardless of the start-point) is not gauge-equivalent to 1.

The promised gauge transformation will be constructed as a composition of
gauge transformations that each affects only a single point (h(x) = 1 for all but
one point x). To begin, choose any two distinct points x0, xN ∈ P , and let
x0, x1, x2, ..., xN be the unique sequence of points for which the links (xk−1, xk)
are in T for all k ∈ {1, 2, ..., N}. Apply a gauge transformation with h(x) = 1 at
all points except x1, and choose h(x1) so that the gauge transformation changes
the value of u(x0, x1) to 1. This also changes the value of u(x1, x2). Then apply
a gauge transformation with h(x) = 1 at all points except x2, and choose h(x2)
to change that new value of u(x1, x2) to 1. Continue like this until all the link
variables along the given path from x0 to xN are equal to 1. Now choose any point
in P that is not on the original path, and consider the unique path in T from x0 to
P . Apply the same recipe along that path to make all the link variables along that
path equal to 1. Then choose any point that is not in any of the preceding paths,
and apply the same recipe again along the unique path in T from x0 to that new
point. Repeat this until all the points in P have participated in at least one of the
paths. The result is that all the link variables associated with links in T are equal
to 1, as promised.
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5 Gauge fixing using only interior transformations

Now suppose that gauge fixing process is only allowed to use interior gauge
transformations, defined to be gauge transformations for which h(x) = 1 at
every boundary point x.

If the graph has only one boundary point, then the construction described in
section 4 still works if we take x0 to be that one boundary point, because that
construction only uses gauge transformations with h(x0) = 1.

If the graph has more than one boundary point, then we cannot set all the link
variables on a maximal tree equal to 1 using only interior gauge transformations, but
we can do this on a slightly smaller tree. Let ΓI = (PI , L̃I) be the graph obtained
from Γ by omitting all boundary points and the links to which they belong,7 and
let TI be a maximal tree for ΓI . Choose any point x1 ∈ PI that is paired with a
boundary point by one of the links in L̃, and let x0 denote that boundary point.
Define T to consist of the links in TI together with the link {x0, x1}. Then the
construction described in section 4 may be used to make all the link variables
associated with links in T equal to 1. The set T is not contained in any larger set
with that property, because any larger set either has a loop or has more than one
boundary point.

7Mnemonic: the subscript I stands for interior points only.
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6 The axial and temporal gauges

In applications to quantum field theory, the graph Γ is usually a (hyper)cubic
lattice, either truncated or wrapped so that the total number of points is finite.
In that case, every link is parallel to one of the dimensions of the lattice. We can
choose a tree T that includes all or at least almost all of the links parallel to a
selected dimension.8 Choosing a tree that includes all the links parallel to that
direction might not be possible, because that might produce a loop (if the lattice
wraps back on itself) or because it might include more than one boundary point
(which is a problem if the gauge fixing process is only allowed to use interior gauge
transformations).9 Ignoring that technicality, making the link variables equal to 1
for all the links in T gives what is called an axial gauge,10 or a temporal gauge
if the chosen dimension is timelike.

8The picture in section 3 illustrates this for the vertical direction.
9Section 5

10The root word “axis” refers to the chosen dimension.
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7 Gauge fixed integrals

Consider an integral of the form

ω ≡
∫

[du] F [u] (2)

where F [u] is a function of the link variables and the integral is over all the link
variables, defined using the Haar measure. This section introduces another way
of writing the integral that gives the same answer whenever the function F [u] is
invariant under gauge transformations.11

Choose a set undirected links that form a maximal tree. Let T be the set of
directed links corresponding to the undirected links in the given maximal tree, and
let u(T ) denote the associated set of link variables. Consider the obvious identity

ω =

∫ (∏
`∈T

du(`)

)
f
[
u(T )

]
f
[
u(T )

]
≡
∫ (∏

`/∈T

du(`)

)
F [u].

If F [u] is gauge invariant, then the quantity f
[
u(T )

]
is also gauge invariant and

depends only on the link variables in u(T ), so the result derived in section 4 implies
that f is actually a constant: it doesn’t depend on the values of the link variables
in u(T ). This gives

ω ∝
∫ (∏

`/∈T

du(`)

)
F [u′] u′(`) =

{
u(`) if ` /∈ T
1 if ` ∈ T.

11The result derived in this section can be adapted to cases where F [u] is invariant only under interior gauge
transformations, by using a tree like the one defined in section 5 instead of using a maximal tree.
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8 Gauge fixing and the path integral

Consider a model whose only field is the gauge field represented by the link variables
u(`), and suppose the action has the standard form

S[u] = β
∑
2

(
1− W (2)

N

)
(3)

with β > 0, the sum is over all unoriented plaquettes, N is the trace of the identity
matrix, and W (2) is the trace of the product of link variables around the perimeter
of an oriented version of 2. The integrand of the euclidean path integral includes
the factor exp(−S[u]), so when β is large, this factor suppresses configurations the
contribution of any configuration in which any of the quantities W (2)/N devi-
ates significantly from 1. To implement a small-coupling expansion, though, we
need a stronger kind of suppression: we want to suppress all configurations whose
individual link variables deviate significantly from 1.

The gauge fixing protocol described in the previous sections can help achieve
that goal. To avoid technical complications, consider a lattice that doesn’t wrap
back on itself and doesn’t have any boundary points.12 Choose a maximal tree T
that includes all the links parallel to the first dimension, all the links parallel to
the second dimension whose first coordinate is zero, all the links parallel to the
third dimension whose first two coordinates are zero, and so on. Section 3 depicts
an example of such a tree for a three-dimensional lattice. Every configuration of
the gauge field may be converted by a gauge transformation to a configuration
that has all link variables associated with links in T equal to 1, so the integrals
over those link variables may be omitted without affecting any of the model’s
predictions.13 With those link variables permanently constrained to be equal to 1,
the factor exp(−S[u]) suppresses all configurations in which any of the remaining

12If the lattice wraps back on itself, then some unsuppressed zero modes may remain even after completely fixing
the gauge (section 9).

13In practice, most calculations use a different type of gauge fixing that respects the symmetries of spacetime.
Instead of setting individual link variables to 1, those schemes work by constraining certain combinations of link
variables. Those constraints are enforced with the help of additional fields called ghost fields (Montvay and Münster
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link variables differs significantly from 1. To deduce this, refer to the example
depicted in section 3 and use these fact:

• Each of the remaining link variables belongs to at least one plaquette that
involves no more than one other remaining link variable.

• Each of those plaquettes is part of a “ladder” of plaquettes that starts with
a plaquette involving only one of the remaining link variables. A “ladder”
is a sequence of plaquettes such that any two consecutive plaquettes in the
sequence share one of the remaining link variables with each other.

• If a plaquette involves only one of the remaining link variables, then W (2)/N
is close to 1 only if that link variable is close to 1.

• If a plaquette involves two of the remaining link variables, then W (2)/N is
close to 1 only if those link variables are close to being inverses of each other,
so if one of them is close to 1, then so is the other one.

To finish the argument, we need to show that small differences between the values
of nearby link variables cannot accumulate into large differences between link vari-
ables on opposite sides of the lattice. That follows from the fact that the factor
exp(−S[u]) is a product of factors, one for each plaquette, so the accumulation of
small differences over a long sequence of plaquettes is suppressed by the product
of the same number of already-small factors.14

(1997), pages 122-123). Preserving spacetime symmetries is convenient for many calculations, but the type of gauge
fixing described in this article is conceptually simpler because it doesn’t require introducing ghost fields (Montvay
and Münster (1997), text below equation (3.133)).

14This argument can be made quantitative, but I won’t bother doing that here.
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9 Zero modes

Section 8 mentioned that one of the motives for using gauge fixing is to enable a
small-coupling expansion and showed that gauge fixing achieves that goal for at
least some lattices. This section shows that gauge fixing does not always achieve
that goal: if the lattice is wrapped, then the action is still independent of some
directions in the space parameterized by the remaining field variables even after
fixing the gauge on a maximal tree. Those directions are called zero modes. The
presence of zero modes prevents using a small-coupling expansion unless something
is done to remove them.

Consider a d-dimensional hypercubic lattice that is wrapped in each dimension
– the lattice version of a d-dimensional torus – with K sites along each dimension.
Consider the largest possible d-dimensional hypercube C that doesn’t intersect
itself as a result of the lattice’s wrapping. We can choose a maximal tree that
doesn’t involve any links outside of C, using a pattern like the example depicted
in section 3. An example with d = 2 and K = 3 is depicted here:

wrap to bottom

w
ra

p 
to

 le
ft

wrap to bottom

w
ra

p 
to

 le
ft

The picture on the left highlights the outline of C, and the picture on the right
highlights the links in a maximal tree. The set of links outside of C is the union of
sets C̃1, ..., C̃d, where C̃k is the set of Kd−1 links that are both outside C and parallel
to the kth dimension. (Each of the links in C̃k connects one of C’s hyperfaces to the
opposite hyperface by wrapping around the kth dimension.) For each k ∈ {1, ..., d},
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multiplying all the link variables in the set {u(`) | ` ∈ C̃k} (using a single consistent
orientation for all those links) by the same element of the gauged group leaves all
plaquette variables invariant. This multiplication is a translation in the space
parameterized by the link variables. This is a zero mode, because the action (3)
depends only on the plaquette variables. This shows that at least d zero modes
exist after gauge fixing on this particular maximal tree. The same conclusion must
be true for any maximal tree, because every maximal tree has the same number of
links, and the choice of maximal tree does not affect the number of independent
plaquette variables.

To check that conclusion, we can use a different approach to count the number of
zero modes when d = 3. For any d, if the lattice has K sites along each dimension,
then the total number of (unoriented) links is d · Kd, and the number of links in
any maximal tree is Kd − 1 (the number of sites minus one), because that’s just
enough links to include a unique path between any two sites. This implies that the
number of independent link variables after gauge fixing on a maximal tree is

d ·Kd − (Kd − 1) = (d− 1)Kd + 1. (4)

From here, we can determine the number of zero modes by subtracting the num-
ber of independent plaquette variables, because those are the combinations of link
variables on which the action (3) depends. For d = 3, the number of (unori-
ented) plaquettes is 3K3, but the corresponding plaquette variables are not all
independent, because the product of a set of plaquette variables is 1 whenever
those plaquettes form a closed surface (with consistent orientations). The number
of independent closed surfaces is K3−1 + 3, where K3 is the number of cubettes.15

The 1 is subtracted because any one cubette variable is proportional to the sum of
the others (because the lattice wraps in every dimension), and the 3 is added to
account for the existence of one surface that is wrapped in two dimensions, for each
of the 3 pairs of dimensions. This shows that the number of independent plaquette
variables is

3K3 − (K3 + 2) = 2K3 − 2. (5)

15The boundary of every cubette a closed surface.
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The difference between (4) (with d = 3) and (5) is 3, so any function of the plaquette
variables – like the action (3) – must be independent of at least 3 directions in the
space parameterized by the link variables even after gauge fixing on a maximal
tree. In other words, this model has 3 zero modes, which agrees with the result in
the previous paragraph.
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