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Asymptotic Freedom
and the Continuum Limit

of Yang-Mills Theory
Randy S

Abstract Article 89053 introduces a family of models called Yang-Mills
theories whose only quantum field is a gauge field. The models are defined
by treating spacetime as a lattice, with the understanding that we only care
about what the model predicts at resolutions much coarser than the lattice
scale. Many models with a nonabelian gauged group in 3- or 4-dimensional
spacetime have a property called asymptotic freedom, which is believed to be
related to the existence of a nontrivial strict continuum limit. This article uses
Yang-Mills theory with gauged group SU(N) to introduce that relationship.
This article also clarifies some things about the small-coupling expansion (also
called perturbation theory) in models with gauge fields.
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1 Introduction

When the gauged group G is connected and nonabelian, the models constructed
in article 89053 – called (pure) Yang-Mills theories – are among the simplest
examples in quantum field theory of models that are believed to have nontrivial
continuum limits with Lorentz symmetry.1,2 The evidence for the existence of such
a limit is related to asymptotic freedom, the subject of this article.

The name asymptotic freedom may be used for either of two closely-related
mathematical phenomena. To distinguish between them, this article calls them the
bare version and the renormalized version of asymptotic freedom.

This article is mostly about the bare version of asymptotic freedom. The family
of lattice models considered in this article has only one continuously adjustable
dimensionless parameter, which may be expressed in terms of the bare coupling
g that will be introduced in section 13. If an appropriate low resolution3 prediction
ω is chosen, then holding the value of ω fixed as the lattice spacing goes to zero
relative to a fixed physical scale may force the value of g to approach zero. This
is the bare version of asymptotic freedom. Calculations using a variety of methods
have not found any obstructions to taking that limit when spacetime has four
(or fewer) dimensions and G = SU(Nc). This apparent absence of obstructions
is consistent with the presumed existence of a nontrivial continuum limit.4 In
contrast, the analogous calculation in models without asymptotic freedom indicates
an obstruction to such a limit.5

Section 25 will introduce the renormalized version of asymptotic freedom, and
section 28 will show that the bare and renormalized versions imply each other.

1A continuum limit is called trivial if the model’s predictions in that limit can be reproduced by a model whose
action is a quadratic function of the field variables. Nontrivial continuum limits are more interesting, because they
can have particles that interact with each other.

2The models in this article are initially defined on a spacetime lattice. Some progress toward a construction of
Yang-Mills theory directly in continuous spacetime has also been made (Magnen et al (1993)).

3In this article, low resolution means coarse compared to the distance ε between neighboring points in the
lattice.

4A full proof of the existence of such a limit is not currently known (Douglass (2004); Jaffe and Witten (2000)).
5Sections 31-32
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2 Notation

• d = number of dimensions of spacetime

• G = the gauged group, which is always either SU(Nc) or U(1) in this article

• Nc = number of colors when the gauged group is SU(Nc)

• Nf = number of quark fields (flavors), which is zero in this article except in
section 30

• Nid = trace of the identity matrix in the representation of G (section 4)

• ε = distance between neighboring points in the lattice (section 6)

• m = mass gap, so 1/(mε) is the correlation length in units of the lattice
spacing (section 5)

• ω = a quantity whose value is held fixed as the continuum limit is being taken
(section 10)

• S = the action (section 4)

• β = overall coefficient of action6

• g = the bare coupling, defined by writing β ∝ 1/g2

• gR = a renormalized coupling, a special type of quantity that can be used
for ω

• E = a characteristic energy associated with gR or ω

6In quantum field theory, the symbol β is commonly used for two different things. One is the overall coefficient
of the action. That convention that comes from the mathematical similarity between path integrals in lattice gauge
theory and expectation values in statistical mechanics, where β traditionally denotes the inverse temperature. The
symbol β is also commonly used for the beta function in the context of the renormalization group. The beta
function is also important in this article, but this article doesn’t use the symbol β for it (section 26).
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3 Simplifying conditions

To avoid distracting complications, this article imposes two simplifying conditions
on the model’s definition:

• The lattice does not wrap back on itself.

• Observables are invariant under all gauge transformations, not just under
gauge transformations that act trivially on the boundary.7

One advantage of using a lattice that wraps back on itself would be that it allows
a model to have a discrete version of translation symmetry when the lattice has
finite size. One disadvantage would be that setting up a small-coupling expansion
is obstructed by the presence of zero modes, which are combinations of link
variables that aren’t constrained by the gauge fixing protocol and that also don’t
affect the value of the action.8 One way to eliminate zero modes is to use twisted
boundary conditions.9 Another way is to overtly prune the zero modes from the
definition of the path integral. The easiest way, the one used in this article, is to
use a lattice that doesn’t wrap back on itself at all.

7Article 00951
8Article 00951; Heller and Karsch (1985)
9Trottier et al (2002), Pérez et al (2017)
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4 The model on a spacetime lattice

This section reviews part of the construction that article 89053 describes in more
detail. Let G be a compact Lie group. When spacetime is treated as a lattice,
the model is constructed entirely from G-valued link variables u(`), one for each
directed link ` in the lattice. Link variables associated with oppositely-directed
links are each other’s inverses. This article uses the Wilson action

S[u] =
β

2

∑
2

(
1− W (2)

Nid

)
, (1)

where each plaquette variable W (2) is the trace of the product of the link
variables around the perimeter of the plaquette 2, with the trace defined using a
faithful matrix representation of G. The integer Nid is the trace of the matrix that
represents the identity element of G. Article 89053 explains how these ingredients
are used to define a quantum model in the path integral formulation. Schematically,
the expectation value of a product of observables O1, O2, ... is10

〈O1O2 · · ·〉 =

∫
[du] e−S[u]O1[u]O2[u] · · ·∫

[du] e−S[u]
, (2)

where Ok[u] is a representation of Ok in terms of link variables.
This model has only one continuously adjustable dimensionless parameter, the

coefficient β in equation (1). Generalizations involving two or more more such
parameters can also be interesting11 but will not be considered in this article.

10We could specify initial and final states by inserting the functions that represent them into the integrand (article
89053). If we don’t do that, then (after Wick rotation) the expectation value naturally approaches the vacuum
expectation value as the length of the lattice in the time direction approaches infinity. More precisely, it approaches
an average expectation value over all vacuum states, if more than one vacuum state exists. Those technicalities won’t
be important in this article.

11Florio et al (2021)
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5 Correlation length and mass gap

The correlation length characterizes how quickly correlations between simulta-
neous local observables fall off as a function of the distance between them when
the state is the vacuum state. The correlation length is determined by the mass
gap – the gap that separates the energies of all non-vacuum states from the en-
ergy of the vacuum state.12 Let m denote the mass gap. If m is nonzero, then
the longest-range correlations fall off like ∼ exp(−m|x|) asymptotically, where |x|
is the distance between the observables.13 This says that 1/m is the correlation
length. If m is zero (infinite correlation length), then the correlations fall off like a
power of |x| instead. This relationship between the mass gap and the correlation
length can be deduced using the euclidean path integral formulation.14,15 Briefly:
the euclidean “time evolution” operator is exp(−Ht), where H is the hamiltonian,
so correlations between observables separated in time fall off exponentially with a
minimum rate determined by m. The symmetry of euclidean spacetime then im-
plies that the same must be true of correlations between observables separated in
space. This also shows that if the correlation length 1/m were zero, then nothing
(no particles or signals) would propagate over distances large enough for experi-
ments to resolve. Models in which the correlation is finite or infinite in physical
units can both be interesting, but models with zero correlation length are not.

When the gauged group G is nonabelian, numerical calculations give compelling
evidence that Yang-Mills theory admits a continuum and infinite-volume limit with
nonzero interactions and a nonzero mass gap.16 Asymptotic freedom, the subject
of this article, can be studied without knowing whether the mass gap is nonzero.

12The name mass gap comes from the fact that this energy difference is equal to the mass of the lowest-mass
particle (in models whose low energy states have a meaningful particle interpretation).

13Article 00980 illustrates this in the model of a free scalar field.
14Montvay and Münster (1997), equations (1.197)-(1.201)
15Article 07246 explains this a little more directly in the case of scalar fields.
16The strong-coupling approximation shows that the correlation length is finite in units of ε when β is small

enough (Montvay and Münster (1997), section 3.4.5), and numerical evidence indicates that it remains finite for all
β (Montvay and Münster (1997), section 3.7).
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6 Continuum and infinite-volume limits

Write ε for the distance between neighboring lattice sites, and write K for the
number of lattice sites across the width of the lattice, so that εK is the overall
linear size of the lattice. The model is defined by treating spacetime as a finite
lattice, but the only predictions that matter are the ones whose resolutions are
much coarser than the lattice spacing ε and much finer than the overall size εK of
space, because those scales are both artificial.

Let ρ be any unit of length such that the resolutions of realistic measurements
are nonzero and finite when expressed in units of ρ. This will be called a physical
unit of length.17 We could keep K finite as long as it is very large, but for
aesthetic reasons we would prefer to take two strict limits:

• a continuum limit, which means ε/ρ→ 0 subject to the constraint εK/ρ > 0,

• an infinite-volume limit, which means εK/ρ→∞.

This article reviews concepts related to taking a continuum limit. Most of this
article assumes that the infinite-volume limit has already been taken.

To get a useful continuum limit, we need the correlation length to be nonzero
in physical units,18 which implies that we need mε → 0,19 where m is the mass
gap. The quantity mε is a function of the model’s parameters and is independent
of ρ, so reaching such a limit may require manipulating the model’s parameters in
addition to manipulating ρ.

17This article uses a system of units in which the speed of light and Planck’s constant ~ are both equal to 1, so if
we have chosen a physical unit of length ρ, then we can use 1/ρ as a physical unit of energy.

18Section 5 explained why this is important.
19This implication follows from the fact that the correlation length in physical units is 1/(mρ), so we need to keep

mρ finite, which implies (mρ)(ε/ρ)→ 0 as ε/ρ→ 0.
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7 Adjusting parameters to reach a continuum limit

Suppose that we have taken an infinite-volume limit but have not yet taken a
continuum limit. Article 00951 shows that if we adopt the simplifying conditions
that were declared in section 3 and use the gauge-fixing protocol that will be
reviewed in section 15, then the gauge-fixed form of the path integral has this
property: taking β to be large suppresses all configurations in which nearby link
variables deviate significantly from each other. This strongly suggests that taking
β → ∞ should make the correlation length become infinite in units of ε, which
is equivalent to mε → 0. The rest of this article assumes that this suggestion is
correct.

Values of β at which mε → 0 are called critical points. For the models with
action (1), mε is nonzero when β is small enough,20 and it is believed to be nonzero
and finite for all finite values of β when the gauged group G is nonabelian and
d ∈ {3, 4},21 so this article will only explore what happens when β →∞.

20This is proved using the strong coupling (small β) expansion, which has a finite radius of convergence
(Montvay and Münster (1997), section 3.4.5).

21When d = 4 and G = U(1), good evidence exists for a weakly first order phase transition at β = βc ≈ 1
(Arnold et al (2001); Arnold et al (2002), mentioned in Majumdar et al (2004)). The value of mε at such a phase
transition would be � 1 but not zero, so it’s not quite a critical point.

10
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8 The physical length scale and continuum limits

Taking a continuum and infinite-volume limit involves two things: tuning the
model’s parameters to achieve mε → 0 (section 7), and choosing how the phys-
ical unit ρ depends on those parameters. In a model where spacetime is already
continuous, the choice of units would not have any affect on the model’s physical
content,22 but the way we make the units behave during the process of taking a
limit can affect the physical content of the result.

As an example, suppose that the mass gap is nonzero,23 which means that
the model has an infinite-volume limit in which mεK → ∞. Taking an infinite-
volume limit requires ρ/(εK)→ 0, but we are free to choose the rate at which this
quantity goes to zero: we can make ρ behave however we want, because the model
on a finite lattice is independent of ρ. By choosing that rate, we can make the
quantity mρ = (mεK)(ρ/(εK)) approach either zero or a nonzero value, whichever
we prefer.24 The quantity mρ is the mass gap in physical units.

Now suppose that taking β → ∞ gives a continuum limit.25 After taking the
infinite-volume limit, we still have the freedom to choose how ρ depends on β. If
the mass gap m is nonzero, then we can choose ρ(β) to make mρ do whatever we
want as β →∞:26 we can make it remain finite, or we can make it go to zero.

Even without knowing whether the mass gap is nonzero, one thing is clear:
starting with one of the lattice models described in section 4, if we take an infinite-
volume limit and then take β → ∞ to get a continuum limit, then the resulting
model cannot have any remaining continuously adjustable dimensionless parame-
ters.27 The qualifier dimensionless is essential because the model might still have
a characteristic scale, like a mass gap.

22Article 37431
23The model reviewed in section 4 is believed to have such a limit when G is nonabelian and d ∈ {3, 4}.
24If the model doesn’t have a limit with mεK →∞, then we are stuck with mρ→ 0.
25Section 7
26Section 33 will illustrate this in a model where the dependence of mε on β is known (for large β), namely the

model with G = U(1) and d = 3.
27If the limits are taken in the opposite order, then the absence of continuously adjustable dimensionless parameters

in the resulting model would no longer be evident (at least not to me), because K is an integer.
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9 Relationship to the renormalization group(s)

If a model in infinite continuous spacetime has one or more continuously adjustable
dimensionless parameters, then we can ask how (or whether) those parameters can
be adjusted to emulate an overall change of scale. This defines a flow in the space
of possible parameter-values. This flow is called the renormalization group.28

Models that look the same at all scales are called fixed points of the renor-
malization group. The models traditionally studied in relativistic quantum field
theory all live in neighborhoods of the trivial fixed point, which is the fixed point
obtained by omitting all higher-than-quadratic terms in the action. Among these
models, the ones with asymptotic freedom are believed to be the ones that admit
nontrivial strict continuum limits. This article only considers models that live near
the trivial fixed point.29

After taking infinite-volume and continuum limits, some models don’t have any
continuously adjustable dimensionless parameters, but they also don’t look the
same at all scales. They have a characteristic scale, typically expressed in units
of energy.30 Example: when the gauged group G is nonabelian and d ∈ {3, 4},
the models described in section 4 are thought to have a nonzero mass gap,31 which
provides a characteristic scale.32,33 Asymptotic freedom can be studied without
knowing whether this is possible.

28Article 10142
29When d ≥ 5 and G = SU(Nc) with Nc ≤ 4, some evidence suggests the existence of a nontrivial fixed point –

not necessarily for the Wilson action (1) (Morris (2005), section 2), but for other some choice of lattice action whose
continuum limit is (4). An example of such evidence is presented in De Cesare et al (2021). Florio et al (2021) lists
some additional references.

30If we take the limit as this scale goes to 0 or ∞, then the model becomes scale invariant.
31Section 5
32The model’s predictions also depend on other dimensionful quantities, like the momenta of the particles entering

a scattering event, but those momenta are properties of the initial state, not properties of the model itself. The
characteristic scale is a property of the model itself.

33The original lattice model has one dimensionless continuously adjustable dimensionless parameter, namely β. Af-
ter taking the infinite-volume and continuum limits, the resulting model has no continuously adjustable dimensionless
parameters but does have a characteristic scale. This phenomenon is called dimensional transmutation.

12
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10 The concept of a renormalization scheme

Suppose that we have already taken K → ∞. Taking a continuum limit means
choosing a physical unit of length, denoted ρ, and sending ε/ρ → 0.34 To specify
the limit unambiguously, we need to specify a relationship between β and ε/ρ.
We can do that by choosing a function ω(β, ε/ρ) that depends on both β and
ε/ρ and requiring that ω remain constant as ε/ρ → 0. This is called choosing a
renormalization scheme.35 It implicitly specifies β as a function of ε/ρ, which
will be denoted β(ε/ρ) in this article.36

Physically, the function ω(β, ε/ρ) should be related to a family of meaningful
low resolution predictions that is parameterized by the physical scale ρ in the
continuum limit.37 Section 11 will list a few examples of renormalization schemes
that are used when d = 4 and G = SU(Nc), and section 21 will highlight a shared
feature of those schemes.

34Section 6
35The word renormalization is used for a few related-but-different things. The way it’s used in this section could

be called nonperturbative renormalization, because its definition doesn’t refer to any small-parameter expansion. In
contrast, perturbative renormalization is a way of constructing useful small-parameter expansions (section 24).

36The function denoted β(ε/ρ) in this article is distinct from what is traditionally called the beta function in
quantum field theory (section 26).

37The relationship between those physical predictions and ω may be indirect, and this freedom can be used to help
make calculations easier.

13
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11 Various renormalization schemes

We can specify the function β(ε/ρ) by specifying a low resolution quantity ω whose
value is kept fixed as ε/ρ→ 0. When G = SU(Nc) and d = 4, quantities that have
been used in the literature for that purpose include:

• quantities expressed in terms of n-point functions of the gauge field,38

• quantities expressed in terms of the expectation value of a Wilson loop,39

• a smoothed version of trace(F 2
ab(x)), using a recipe called the gradient flow

to do the smoothing.40,41

Section 21 will highlight a feature shared by all these approaches.
Another way to specify the function β(ε/ρ) is to find a modified action on a

coarser lattice that gives the same low resolution predictions as the original action
on the finer lattice.42 That approach is more difficult and is not normally used in
practice, at least in models with gauge fields.43

38Sections 16-19 will explain how these functions are defined, and section 23 will describe this type of scheme in
more detail.

39Section 22 will review this scheme.
40Lüscher (2010), equation (1.4) and the surrounding text, and equations (2.1), (2.14), and (3.1)
41Makino et al (2018) explains how this approach relates to the zooming-in/out idea used in article 10142. The

smoothing effect is related to the one described more explicitly in Morningstar and Peardon (2004). Fodor et al
(2012) describes a variation of the method, using finite volume to eliminate complications due to zero modes.

42For a family of models involving only scalar fields, article 22212 uses a similar idea that works by integrating out
high-momentum modes in the path integral.

43Balaban (1987) explains how to implement it in Yang-Mills theory with the action (1). Theorem 2 in Balaban
(1987) (for d = 4, and the text above it for d = 3) gives the form of upper and lower bounds on the (inverse of the)
renormalized coupling defined using this procedure.

14
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12 Preview of results

In a continuum limit, the correlation length must become infinite in units of the
lattice spacing.44 Section 7 established that this requirement can be satisfied by
taking β → ∞. For G = SU(Nc) this appears to be the only way to satisfy that
requirement, so for a given renormalization scheme, the key question is whether
it makes β → ∞. For G = SU(Nc), the result of applying any of the standard
renormalization schemes depends on d:

• For d ≤ 4, it drives β toward ∞ as ε/ρ→ 0, as desired.

• For d ≥ 5, it drives β toward zero.45

The d 6= 4 cases will be deduced in section 29. The d = 4 case requires additional
calculations, the results of which will be reviewed in section 30.

44Section 6
45For d ≥ 5, instead of imposing any of the standard renormalization schemes, we could independently send both

ε/ρ → 0 and β → ∞. That would give a continuum limit with nonzero correlation length, but the resulting model
would be trivial (no interactions).

15
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13 The bare coupling

The overall coefficient β is the only continuously adjustable parameter in the action
(1). Calculations are often done by writing β in terms of the bare coupling g that
was mentioned in section 1 and then absorbing a factor of g into the gauge field so
that an expansion in powers of g is essentially an expansion in powers of the gauge
field.46 This section introduces the bare coupling g, using the small-g expansion of
the action itself to motivate the details of the definition.

Let G be a (faithful matrix representation of a) compact Lie group. Let T1, T2, ...
be a complete set of generators for the Lie algebra, chosen to satisfy

trace(TjTk) = −νδjk

for some ν > 0.47 Define the bare coupling g > 0 and the gauge field Aa(x) by
writing the coefficient β and the link variables u(`) as

β =
2Nidε

d−4

νg2
u(`) = exp

(
gεAa(x)

)
, (3)

where Nid is the trace of the identity matrix, and the endpoints of the link ` are x
and x+ ea, using the subscript a to specify which dimension is parallel to the link.
Each component Aa(x) of the gauge field is a linear combination of the generators
Tk. The definition of g in (3) is motivated by the fact that non-quadratic terms in
the action are multiplied by extra powers of g compared to the quadratic term:48

S =
−1

4ν

∫
ddx

∑
a,b

trace(∂aAb − ∂bAa)
2 +O(g)O(A3) (4)

where ∂ is a lattice version of the derivative, which includes a factor of ε in the
denominator, and

∫
ddx · · · is a lattice version of the integral over spacetime, which

includes a factor of εd in the numerator.
46Section 20
47The conventions ν = 1 and ν = 1/2 are typically used when G is abelian and nonabelian, respectively.
48article 89053
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14 Asymptotic freedom and nontriviality

Knowing that a model has asymptotic freedom does not automatically prove that
it has a nontrivial continuum limit, but among models that live in a neighborhood
of the trivial fixed point, those that have asymptotic freedom are thought to be the
ones that have nontrivial continuum limits, partly because these are the models
that don’t show evidence of any obstruction to such a limit (section 32).

That might seem counterintuitive, because (the bare version of) asymptotic
freedom means that g → 0 in the continuum limit, and the continuum limit would
be trivial if the non-quadratic terms in the action (4) were absent. However, some
effects of the non-quadratic terms in (4) – the terms that are multiplied by a positive
power of g – may approach nonzero values even though the non-quadratic terms
themselves approach zero.49 The fact that g → 0 in the continuum limit does not
rule out the possibility that the continuum limit is nontrivial.

49Analogy: even if x→ 0, a quantity of the form x f(x) may remain nonzero, like when f(x) = 1/x.
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15 Gauge-fixed expectation values

Expanding vacuum expectation values in powers of 1/β can be a useful tool for
studying the limit β → ∞. This section reviews an identity that can be used to
define an expansion in powers of 1/β.

A maximal tree may be roughly defined as a collection of (undirected) links
that doesn’t include any loops but that would include a loop if any other link were
added to the collection.50 Let T be the set of all directed links corresponding to the
undirected links in a maximal tree. Article 00951 shows that if I[u] is any gauge
invariant function of the link variables, then∫

[du] e−S[u] I[u] · · ·∫
[du] e−S[u]

=

∫
[du]′ e−S[u′] I[u′] · · ·∫

[du]′ e−S[u′]
(5)

where [du]′ indicates integration only over the link variables that are not associated
with links in T , and

u′(`) =

{
u(`) if ` /∈ T
1 if ` ∈ T.

This is a relatively simple example of gauge fixing, one in which the link variables
associated with links in T are all constrained to be equal to 1.51 The left-hand side
of (5) will be called the unconstrained form, and the right-hand side will be called
the gauge-fixed form.52

50Article 00951
51Baaquie (1977) compares two different gauge-fixing schemes in lattice Yang-Mills theory. One is a maximal-tree

scheme as described here, and the other is a more symmetric scheme that makes calculations easier to manage. The
temporal gauge and the axial gauge are close relatives of the type of gauge-fixing used here (article 00951).

52Analyses that appear to define correlation functions of non-gauge-invariant quantities are often implicitly using
an identity like (5): they define the correlation function using a particular gauge-fixing scheme, typically without
ever specifying the corresponding gauge-invariant quantity. Texts often emphasize that gauge fixing is a prerequisite
for using perturbation theory, and the result derived in section 17 shows that it can also be a prerequisite for defining
such correlation functions nonperturbatively. Example: Henty and Parrinello (1995) use the Landau gauge to define
n-point correlation functions of the lattice gauge field, even though their computational method is nonperturbative.

18
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16 n-point correlation functions

In much of the literature about Yang-Mills theory, the quantity that is held fixed
as β → ∞ is defined using a 3- or 4-point correlation function of the variables Aa

that were introduced through equation (3).53 This section takes a first step toward
defining those correlation functions. Section 19 will give a complete definition.

The lattice model is constructed in terms of G-valued link variables u(`). As
explained in section 20, the Lie-algebra-valued quantities Aa(x) are not uniquely
determined by the link variables, but if we define54

Âa(x) ≡ Â(`) ≡ u(`)− u−1(`)

2gε
(6)

for the link ` with endpoints x and x + ea, then equation (3) says that Âa(x) is
equal to Aa(x) to lowest order in the small-g expansion.

Correlation functions of the quantities Â(`) are unambiguously defined in the
lattice model, independently of the small-g approximation. Those correlation func-
tions are not quite what we want, though: section 17 will show that if `1, `2, ..., `n
is a list of links that don’t share any endpoints with each other,55 then the cor-
responding n-point correlation function – the vacuum expectation value of the
product Â(`1)Â(`2) · · · Â(`n) – is identically zero. This is a consequence of the fact

that the action is invariant under gauge transformations but Â(`) is not.
If those correlation functions are zero, then what are textbooks really calculating

when they claim to be calculating a nonzero 3- or 4-point function in Yang-Mills
theory? Section 19 will answer that question.

53Section 23
54Equation (21) in Giusti et al (2001) takes the traceless part of (6). This article doesn’t, because it’s not

appropriate when G = U(1), and because it isn’t strictly needed even when G = SU(3): the non-traceless part (like
the θ3 term in eiθ − e−iθ with θ ∝ diag(2,−1,−1)) is of higher order in g.

55If they did, then the continuum limit of the correlation function would involve the product of two As at the same
point in spacetime. Such products require special treatment even in the simplest models (article 23277).
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17 A lemma about correlation functions

This section derives a result that was used in section 16.
Let Γ be a set of distinct directed links, and suppose that at least one of the

two endpoints of at least one of the links in Γ is not shared by any of the other
links in Γ. Let u(`1)u(`2) · · ·u(`n) be a product of link variables, in any order, with
{`1, `2, ..., `n} = Γ. This section shows that the expectation value of that product
is zero.

Write the path integral as

〈
u(`1)u(`2) · · ·u(`n)

〉
∝
∫ n∏

k=1

(
du(`k)u(`k)

)
f
(
u(`1), ..., u(`n)

)
with

f
(
u(`1), ..., u(`n)

)
≡
∫ (∏

`/∈Γ

du(`)

)
e−S[u].

The quantity f(u(`1), ..., u(`n)) is gauge invariant and depends only on the link
variables u(`1), ..., u(`n). We assumed that one of those link variables, say `1, has
an endpoint that is not shared by any of the others, so gauge invariance implies
that the function f must be independent of u(`1). That gives

〈
u(`1)u(`2) · · ·u(`n)

〉
∝

(∫ n∏
k=2

(
du(`k)u(`k)

)
f

)(∫
du(`1) u(`1)

)
.

The second factor is zero because the Haar integral over any compact Lie group
has the property

∫
dg g = 0.56

56This is a special case of theorem 5.12 in Bröcker and tom Dieck (1985).
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18 Another lemma about correlation functions

This section derives a result that will be used in section 19.
Let Γ be a set of directed links that forms a closed loop:

Γ =
{

(x1, x2), (x2, x3), ..., (xn, xn+1)
}

with xn+1 = x1. The result that was derived in section 17 doesn’t apply to this
case, because endpoint of every link in Γ is shared by two links in Γ. This section
shows that if G is an irreducible matrix representation of a compact Lie group, like
the defining representation of U(1) or SU(N), then the expectation value of the
product

p ≡ u(x1, x2)u(x2, x3) · · ·u(xn, x1)

is proportional to the identity matrix, which implies that the proportionality factor
is
〈
trace(p)

〉
/Nid, where Nid is the trace of the identity matrix.

That result can be derived by combining these two facts:

• The effect of a gauge transformation on p is p 7→ hph−1 where h is an element
of G associated with the point x1. This implies that the effect of the same
gauge transformation on the expectation value 〈p〉 is 〈p〉 7→ h〈p〉h−1.

• Everything else in the integrand of the path integral is invariant under gauge
transformations, and so is the Haar measure, so the effect of this gauge trans-
formation may be absorbed into a redefinition of the integration variables
u(x1, x2) and u(xn, x1). This shows that 〈p〉 is invariant under gauge trans-
formations.

Combining these two results gives h〈p〉h−1 = 〈p〉 for all h ∈ G. If G is an irreducible
representation of a compact Lie group, then this implies57 that 〈p〉 is proportional
to the identity matrix, as claimed.

57This isa consequence of Schur’s lemma (Zelobenko (1973), section 20, page 56).
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19 n-point correlation functions with gauge-fixing

Section 17 showed that a näıve definition of the correlation function of n factors of
the gauge field A is identically zero if the factors are separated from each other in
spacetime. When textbooks calculate a nonzero result for such correlation function,
they’re implicitly using an identity like (5), where the right-hand side looks like a
correlation function of n factors of the gauge field even though the function I[u] on
the left-hand side is invariant under gauge transformations. This section explains
how that works, using the gauge-fixing protocol that was reviewed in section 15.

As an example, suppose that the function I[u] on the left-hand side of the
identity (5) is a Wilson loop, the trace58 of the product of link variables around
some closed path in the lattice. On the right-hand side of (5), some of the link
variables in the given Wilson loop might have been replaced by 1. In that case,
the right-hand side doesn’t look like the expectation value of a Wilson loop, and
it doesn’t look gauge invariant. If most of the factors in the given Wilson loop
are associated with links in the maximal tree T , then the function I[u′] on the
right-hand side might be a product of only a few link variables whose links don’t
share any endpoints with each other.

Conversely, suppose that the function I[u′] on the right-hand side of (5) is a
product of n link variables u(x1, y1), u(x2, y2), ..., u(xn, yn) whose links (xk, yk) don’t
share any endpoints with each other and don’t belong to the tree T . The premise
that the tree T is maximal means that it includes a (unique) path connecting any
two given points in the lattice, so we can promote our product of n link variables
to a closed loop C by inserting factors along the paths in T that connect y1 to
x2, connect y2 to x3, and so on, finally connecting yn back to x1. That doesn’t
change the product, because all the factors we inserted are equal to 1. This shows
that the gauge-fixed expectation value of the product of n separated link variables
(the left-hand side of (5)) is secretly the full expectation value of a product of link
variables around a closed loop (the right-hand side of (5)). Section 18 showed that

58The trace is necessary for making the Wilson loop gauge-invariant when G is nonabelian, but the result would
be essentially the same even if we defined I[u] without the trace, because the path integral automatically projects
the result to its trace whenever G is an irreducible representation of a compact Lie group (section 18).
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taking the trace doesn’t change the result except for an overall factor of Nid, so the
result is gauge invariant.

If the function I[u′] on the right-hand side of (5) is a product of n factors of the

quantity Â defined in (6), then

〈Â(x1, y1)Â(x2, y2) · · · Â(xn, yn)〉 ∝∑
s1,s2,...,sn∈{±1}

(s1s2 · · · sn)
〈
us1(x1, y1)u

s2(x2, y2) · · ·usn(xn, yn)
〉
, (7)

so the corresponding function I[u] on the left-hand side is a linear combination of
2n different Wilson loops59 (or 2n−1 if we don’t separately count loops that circulate
in opposite directions but are otherwise the same).

Altogether, this shows that the correlation function of n widely-separated fac-
tors of the gauge field can be nonzero when it’s defined using a particular gauge-
fixing scheme. This section considered only one gauge-fixing scheme, but a similar
principle applies to all of them.

59The relationship u−1(`) = u(˜̀), where ˜̀ and ` are oppositely-directed versions of the same undirected link,
implies that a different Wilson loop must be used for each term on the right-hand side of (7).

23



cphysics.org article 07611 2024-10-18

20 From large β to small coupling

We can write each G-valued link variable as

u(`) = eθ(`), (8)

where θ(`) is an element of the Lie algebra of G.60 The study of asymptotic freedom
uses a small-coupling expansion,61 also called perturbation theory, which
amounts to expanding the link variables (8) in powers of θ(`) everywhere in the
path integral (2). This approximation is used frequently, but I have not found
a complete explanation of when and why it works. The next paragraph gives a
partial explanation, and then the rest of this section clarifies why the explanation
incomplete.

Article 00951 explains that if the gauge-fixing scheme reviewed in section 15 is
used, then configurations in which the link variables u differ significantly from 1
are strongly suppressed when β is large.62 The condition θ(`) ≈ 0 implies u(`) ≈ 1,
so configurations with θ(`) ≈ 0 are still important when β is large. This gives a
partial justification for using a small-θ approximation.

That partial justification isn’t quite enough, though, because the condition
u(`) ≈ 1 does not imply θ(`) ≈ 0. The rest of this section uses the cases G = U(1)
and G = SU(2) to emphasize that fact.

When G = U(1), we can write u(`) = eiφ(`) for a real-valued variable φ(`), and
then the condition u(`) ≈ 1 implies φ(`) is limited to neighborhoods of 2πn(`) for all
integers n(`), not just n(`) = 0. A careful formulation of the large-β approximation
should account for all these neighborhoods. The Villain model does this by63

replacing the action (1) with an action quadratic in the quantity φ(`) − 2πn(`)

60This article assumes that G is defined using a faithful matrix representation, so θ(`) is a matrix of the same size
as u(`) and the definition of eθ(`) is straightforward (article 18505).

61Calculations in models with more than one small coupling parameter usually involve expanding in powers of each
of those parameters. Questions about how to treat different powers of different parameters consistently are avoided
by using the loop expansion (Fradkin (2022), section 13.1).

62More generally, a large-β approximation is a saddle-point approximation: configurations that don’t minimize the
action are suppressed when β is large.

63Janke and Kleinert (1986)
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and replacing the integral over each link variable u(`) in (2) with an integral over
φ(`) and a sum over n(`). When β is large, the path integral is dominated by
values of φ(`) in neighborhoods of 2πn(`) for all integers n(`). This is true both
for the Villain model and for the original G = U(1) model with action (1), so
the predictions of these two models are expected to become indistinguishable from
each other when β is large enough.64 When d = 3, using a small-θ expansion
without the sum over n(`) can lead to qualitatively different predictions when β is
large but finite.65 This demonstrates that the small-θ approximation is not quite
automatically implied by the large-β approximation.

Now consider the case G = SU(2). In this case, the condition u(`) = 1 is
equivalent to the condition θ(`) = 2πi n(`)U(`)DU−1(`), where n(`) is an arbitrary
integer, D is a traceless diagonal matrix with determinant −1, and U(`) is an
arbitrary unitary matrix.66 To construct a Villain-like model for G = SU(2),
the sum over the integer-valued variables n(`) would need to be augmented by
integrals over the unitary matrices U(`). The resulting path integral might not
be much easier to handle (either intuitively or mathematically) than the original
path integral over the SU(2)-valued link variables. The difficulty is even greater
for other compact Lie groups G with more complicated topologies.67 This article
will cope with that difficulty the same way published sources typically cope with
it – namely by ignoring it, pretending that the large-β approximation implies the
small-θ approximation.

64Janke and Kleinert (1986)
65The continuum limit (which involves taking β →∞) can be taken in such a way that the small-θ approximation

gives the right answer, but when d = 3 the continuum limit can also be taken a different way that has qualitatively
different properties. Section 33 reviews both of these limits.

66Topologically, this set of values of θ(`) is a series of concentric 2-spheres in R3 with radii proportional to |n(`)|.
The case G = U(1) can be described in a similar way, because the quantities 2πn form a series of concentric 0-spheres
(a 0-sphere is a pair of points) in R1 with radii proportional to |n|.

67Article 92035
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21 A feature shared by various schemes

Section 11 listed examples of quantities ω that can be held fixed as ε/ρ→ 0, which
determines how β behaves in that limit. The choice of which quantity to hold fixed
is called a renormalization scheme. Section 22 will review one example of a
renormalization scheme in more detail. This section highlights a feature shared by
all of the most commonly-used renormalization schemes when d = 4.

In practice, the quantity ω to be held fixed is calculated using a small-coupling
expansion,68 whose relationship to the large-β approximation was partially ex-
plained in section 20. This leads to an equation for the ε/ρ-dependence of β in
the small-coupling expansion.

Suppose that the gauge has been fixed69 so that the small-coupling expansion is
well-defined.70 In the renormalization schemes that are used most often when d = 4,
the quantity that was denoted ω in section 11 is denoted g2

R, and its small-coupling
expansion has the form71,72

g2
R = g2 + c4g

4 + c6g
6 + · · · . (9)

The quantity gR is called a renormalized coupling, and the renormalization
scheme is defined by holding gR fixed as ε/ρ→ 0.

68This is why section 11 didn’t list any renormalization scheme based on holding a two-particle scattering amplitude
fixed. Even though Yang-Mills theory does have particles (called glueballs), their existence is not visible in a small-
coupling expansion. Yamanaka et al (2021) studies glueball scattering using numerical methods.

69Section 15
70The series may be well-defined even if it doesn’t converge. Small-coupling expansions are typically asymptotic

(non-convergent) expansions.
71Creutz (1981), equation (2.23); Montvay and Münster (1997), equation (3.257)
72The coefficients ck with k ≥ 4 may grow without bound in the limit ε/ρ→ 0. That’s not necessarily a problem.

Depending on their signs, it could just mean that g2 is forced to approach zero in the limit ε/ρ → 0 if g2R is held
fixed (footnote 88 in section 24).
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22 Example of a renormalization scheme

In one of the renormalization schemes that was listed in section 11, the quantity
gR in equation (9) is defined using a Wilson loop, specifically a rectangular Wilson
loop that is arbitrarily long in the “time” direction73 and with a variable width r
in the space direction.74 If 〈W 〉 denotes the expectation value of the Wilson loop
and t denotes the “duration” of the rectangle, then the quantity

V (r) ≡ − lim
t→∞

log〈W 〉
t

can be interpreted as the interaction potential between two quarks in the limit of
infinite quark mass, called the static potential.75,76 Taking a Fourier transform
with respect to r and multiplying by an appropriate power of the Fourier-conjugate
variable E gives a quantity gR of the form (9).77 This gR is invariant under gauge
transformations, so gauge-fixing is not a prerequisite for defining it,78 but gauge-
fixing is still a prerequisite for using a small-g expansion to calculate gR as previewed
in section 21.79

73“Time” is in quotation marks because the calculations are normally done in the context of the euclidean path
integral, which does not distinguish between time and space.

74Equation (2.7) in Celmaster and Kovacs (1984) shows how the expectation value of this Wilson loop depends on
the “duration” and width of the rectangle to order O(g2) for G = SU(Nc) and d = 4.

75Necco (2003), equation (2.10); Bali and Boyle (2002),e quation (27)
76Article 85870 uses a similar idea to study the force between two charge objects (in the limit of infinite mass)

mediated by a massless scalar quantum field.
77Necco (2003), equations (2.14)-(2.15)
78This contrasts with schemes that use an n-point correlation function for ω: gauge-fixing is a prerequisite for

defining those correlation functions (section 19).
79Section 5.1 in Smit (2002) summarizes the calculation, and Bali and Boyle (2002) lays it out in detail. (The

latter source includes an arbitrary number nf of quark fields, but we can set nf = 0 to get pure Yang-Mills theory.)
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23 Another example of a renormalization scheme

In another one of the renormalization schemes that was listed in section 11, the
quantity gR in equation (9) is expressed in terms of n-point functions of the gauge
field.80,81 This is similar to what is typically done in models of scalar fields,82 and it
is also standard in gauge theory, at least in quantum field theory texts that don’t
use a lattice. It can also be used in lattice gauge theory.83

Different renormalization schemes can lead to different behaviors of β(ε/ρ). In
particular, when applied to the model with G = U(1), keeping the connected part
of a four-point function (which would be zero if the action were quadratic) fixed as
ε/ρ→ 0 would make β → 0, whereas defining gR using the Wilson-loop recipe that
was described in section 22 would make β approach a finite nonzero constant.84 In
contrast, for G = SU(Nc), those two different renormalization schemes both lead
to the same result.

80Sections 16-19 explained how these functions are defined.
81Instead of using the full n-point function, this type of renormalization scheme typically uses the the one-particle

irreducible (1PI) part, because this would be zero if interactions were absent. Beware that the use of the word
particle in this name comes from perturbation theory. It doesn’t necessarily refer to physical particles.

82Article 22212
83Hasenfratz and Hasenfratz (1980) (which corrects errors in Dashen and Gross (1981)) use this approach in lattice

Yang-Mills theory, and Montvay and Münster (1997) reviews the results in equations (3.256)-(3.261).
84Smit (2002), equations (5.19)-(5.21)
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24 Perturbative renormalization

Truncating the expansion (9) at a finite power of g is not necessarily a good approxi-
mation, because the coefficients ck in the expansion may have large magnitudes.85,86

so the coefficient of the g4 term diverges when ε/ρ → 0. Even though the small-
g expansion may not be directly useful as an approximation, it is still indirectly
useful:

• It can be used to infer something about the behavior of β ∼ εd−4/g2 as
ε/ρ→ 0,87 which then tells us something about the nature of the continuum
limit.88 This is the subject of sections 26 and 29-30.

• An expansion in powers of g can be rearranged into an expansion in powers of
gR, and truncating this expansion at a finite power of gR can give a good ap-
proximation of some physically important quantities in the continuum limit
even if truncating the original g-expansion was not a good approximation.
This trick is called perturbative renormalization. Perturbative renor-
malization is the context for the concept of a running coupling, which will be
introduced in section 25.

85Lepage and Mackenzie (1993), section 2.1
86Example: c4 ∼ log(ε/ρ) when d = 4 and G = SU(Nc). This is implied by the results that will be reviewed in

section 30, which say that the quantity γ4 ≡ −ε dc4/dε in equation (11) is independent of ε/ρ.
87The desired behavior is β →∞ (section 7).
88For a contrived example, consider the finite series g2R = g2 − g4 log(ε/ρ) + g6 log2(ε/ρ). Holding this quantity

fixed as ε/ρ→ 0 forces g → 0, which gives β →∞ if d ≤ 4. This remains true if the g6 term is ignored, even though
ignoring the g6 term is not a good approximation when |g2 log(ε/ρ)| � 1.
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25 Asymptotic freedom: renormalized version

The preceding sections focused on what section 1 called the bare version of asymp-
totic freedom. In most of the physics literature, asymptotic freedom refers to
what section 1 called the renormalized version of asymptotic freedom. This section
introduces the renormalized version.

Exact calculations are rarely feasible in quantum field theory, so calculations
are typically done by working out the first few terms in an expansion in powers of
some small parameter. We can take this small parameter to be the quantity gR
that was introduced in section 21, because the value of that quantity is kept fixed
in the continuum limit.

Given a one-parameter family of predictions P (gR, E) parameterized by the
total energy E of the initial state, we can define a function gR(E) so that

Ptree(gR(E), E) = P (gR, E),

where Ptree(·, ·) is the lowest-order term in the small-gR expansion of the function
P (·, ·). By choosing an energy E0 and expanding things in powers of gR(E0),
the first few terms in the expansion can be a good approximation for physical
processes whose energy is close to E0, where gR(E) is small.89 The function gR(E)
is called a running coupling. In Yang-Mills theory, the function gR(E) approaches
zero as E → ∞, so this small-coupling expansion becomes an increasingly good
approximation at higher energies. This is the renormalized version of asymptotic
freedom.90

In practice, we don’t know how to calculate P (gR, E) or gR(E) exactly, but
we can make progress by using perturbative renormalization:91 we can calculate
everything as a formal expansion in powers of the bare coupling g, and then we
can invert the relationship (9) to express the bare coupling in terms of gR(E0) so
that everything ends up being expanded in powers of gR(E0) instead.

89We can use ρ = 1/E0 as the physical length scale in section 10.
90Even though it’s defined in the context of a small-coupling expansion, the renormalized version of asymptotic

freedom can be checked using numerical calculations (Creutz (1981)).
91Section 24
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26 The beta function

In a renormalization scheme of the type described in section 21, a quantity of the
form (9) is held fixed as ε/ρ→ 0. This condition may be expressed as

Dε g
2
R = 0, (10)

using the abbreviation Dε ≡ ε d/dε for the dimensionless derivative. Equations
(9) and (10) together define how g2 depends on ε, which in turn defines how the
quantity β in equation (3) depends on ε.

Equation (10) is implicitly a differential equation for the function g2(ε). To
make it explicit, use equation (9) to get

Dεg
2
R =

(
1 + 2c4g

2 + 3c6g
4 + · · ·

)
Dεg

2 + (Dεc4)g
4 + (Dεc6)g

6 + · · ·

and then use this in (10) to get

1

2
Dεg

2 = γ4g
4 + γ6g

6 + · · · (11)

with g-independent coefficients γk. The abbreviation

γ ≡ 1

2
Dεg

2 (12)

will be used for the left-hand side of (11). The quantity (12) is called the beta
function and is often denoted β(g). This article is using the symbol β for a
different purpose, namely for the overall coefficient of the action (1). Holding g2

R

fixed as ε/ρ → 0 requires treating that parameter β as a function of ε/ρ, and this
article uses the notation β(ε/ρ) for that function, not for the quantity (12). The
quantity (12) will also be important, though: it will be used to access the sign of
the slope of the function β(ε/ρ). This sign can be used to diagnose asymptotic
freedom.
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27 Scheme-independence of the first coefficients

Equation (9) implies that the functions g(ε) and g̃(ε) defined by two different renor-
malization schemes in that family are related to each other by

g̃2(ε) = g2(ε) + cg4(ε) +O(g6). (13)

This section shows that the coefficients of the first two terms in the small-coupling
expansion of the quantity

γ ≡ ε
d

dε
g2 (14)

are the same for all such renormalization schemes. To prove this, write

γ = γ4g
4 + γ6g

6 +O(g8) (15)

and use

ε
d

dε
g̃2 = ε

d

dε
(g2 + cg4 +O(g6)) (equation (13))

= γ × (1 + 2cg2 +O(g4)) (equation (14))

= (γ4g
4 + γ6g

6 +O(g8))× (1 + 2cg2 +O(g4)) (equation (15))

= γ4g
4 + γ6g

6 + 2cγ4g
6 +O(g8)

= γ4g̃
4 + γ6g̃

6 +O(g̃8). (equation (13))

Comparing the last line to equation (13) shows that the first two coefficients in (11)
are the same for two different renormalization schemes defined by fixing different
quantities of the form (9).92

92The text below equation (4.1) in Fodor et al (2012) mentions a more general family of renormalization schemes
in which the quantity held fixed is not limited to the form (9). Among renormalization schemes in that more general
family, only the first coefficient is scheme-independent.
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28 Asymptotic freedom: bare and renormalized

The preceding sections focused on what section 1 called the bare version of asymp-
totic freedom, which is about what happens to the bare coupling g when an appro-
priate prediction is held fixed as the lattice spacing ε goes to zero compared to a
given physical scale. Expanding to only a finite power of the bare coupling might
not always give a good approximation,93 but it can lead to a good approximation
when rearranged to be an expansion in powers of a renormalized coupling gR
that is more closely related to (or equal to) the given prediction and that is re-
lated to the bare coupling by a series of the form (9). The coefficients in that
series are functions of the lattice spacing. For d = 4, the quantities g and gR
are dimensionless, so the coefficients depend on the lattice spacing ε only through
the dimensionless combination ε/ρ where ρ is a given physical length scale.94 In
practice, the scale ρ is usually taken to be the inverse of an energy scale E that
characterizes the physical process used to define gR,95 so the dimensionless com-
bination is εE. The renormalized version of asymptotic freedom is about what
happens to gR as the characteristic energy E goes to infinity, or equivalently as the
characteristic length ρ = 1/E goes to zero.

At least to first order in the small-coupling expansion when d = 4, the bare and
renormalized versions of asymptotic freedom imply each other. To deduce this,
start with

g2
R = g2 + f(εE)g4 +O(g6), (16)

which is more explicit way of writing (9). For a given E, the ε-dependence of g is
defined by holding g2

R fixed as ε→ 0. The condition

d

d log ε
g2
R = 0 (17)

93Section 21
94Montvay and Münster (1997), equation (3.257)
95Section 22 will review a renormalization scheme in which the quantity held fixed is defined by starting with a

rectangular Wilson loop and taking the Fourier transform with respect to its width in one dimension. Then the
variable E is the Fourier conjugate of the width variable.
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gives
d

d log ε
g2 =

−f ′g4 +O(g6)

1 + 2fg2 +O(g4)
= −f ′g4 +O(g6). (18)

For a given ε, the quantity gR is a function of the physical energy scale E. The
E-dependence of g2

R is given by equation (16):

d

d logE
g2
R = f ′g4 +O(g6) = f ′g4

R +O(g6
R) (19)

If f ′ < 0, then equation (18) says that g2 → 0 as ε→ 0, and equation (19) says that
g2
R → 0 as E →∞. Equations (18) and (19) may differ from each other at higher

orders in the small-g expansion,96 but at least to lowest order, this shows that the
bare and renormalized versions are both are controlled by the same function f(εE):
asymptotic freedom occurs if the slope of that function is negative.

96Creutz (1983), text below equation (13.17); Smit (2002), equations (5.27)-(5.32)
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29 Deducing the slope of dβ/dε when d 6= 4

What happens to β in the limit ε/ρ→ 0 if a prediction of the form g2
R = g2 +O(g4)

is held fixed in units of the physical length ρ? Section 12 previewed the answer.
This section uses a simple scaling argument to deduce the answer when d 6= 4.

The dimensionless expansion parameter is β−1 ∝ g2ε4−d, so the quantity g2
R in

units of ρ is97

g2
Rρ

4−d = g2ρ4−d +O(g4) ∝ 1

β

(ρ
ε

)4−d
+O(1/β2)

with a proportionality factor independent of β and ε. The lowest-order term by
itself would say that the function β(ε/ρ) defined by holding g2

R fixed as ε/ρ → 0
would be

β(ε/ρ) ∼ (ε/ρ)d−4. (20)

The significance of this depends on the number d of spacetime dimensions:

• When d < 4, (20) would give β → ∞ as ε/ρ → 0.98 This is the bare version
of asymptotic freedom.99

• When d > 4, the opposite occurs: (20) says that β decreases as ε/ρ → 0,
so the existence of a nontrivial continuum limit would require approaching a
nontrivial fixed point, which is beyond the scope of this article.100

• For d = 4, the sign of the slope of the function β(ε/ρ) is not determined by
the lowest-order term, so the g4 term must be calculated before a conclusion
can be reached. Section 30 will review the result of that calculation.

97This section writes the physical length scale as ρ for consistency with most of the preceding sections. We could
use ρ = 1/E for consistency with sections 22, 25, and 28. This would only change the notation, not the content.

98This is consistent with (but doesn’t justify) neglecting the higher-order terms.
99When G = U(1), calling this asymptotic freedom might be misleading, because the continuum limit of the model

with G = U(1) is strictly free (no interactions), not just asymptotically free. This is related to the absence of O(g)
terms in equation (4) when G = U(1).
100Nontrivial fixed points probably don’t exist for the Wilson action. Their possible existence for other lattice

actions that have the same continuum limit is under investigation (footnote 29 in section 7).
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30 Results when d = 4

For QCD with Nc colors and Nf flavors in four-dimensional spacetime, the coeffi-
cients in equation (11) are101

γ4 =
1

(4π)2

11Nc − 2Nf

3
γ6 =

1

(4π)4

34N 3
c − 13N 2

cNf + 3Nf

3Nc
(21)

Set Nf = 0 to get the result for SU(Nc) Yang-Mills theory without quarks:

γ4 =
1

(4π)2

11Nc

3
γ6 =

1

(4π)4

34N 2
c

3
. (22)

More generally, when the gauged group G is connected and when Nf quark
fields are included in a representation r of G, the first coefficient is102

γ4 =
11

3
C(adj)− 4

3
NfC(r) (23)

where C(r) is defined like ν was in section 13, but using the specified representation
r.103,104 In the first term, this quantity is defined using the adjoint representation.
In the second term, it’s defined using the representation r appropriate for the quark
fields.105 The important properties of C(r) are:

• If r is the fundamental representation, then C(r) > 0.

• If G is nonabelian, then C(adj) > 0.

• If G is abelian, then C(adj) = 0.

Using these results in equation (11) gives asymptotic freedom when G = SU(Nc).
101Lucini (2013), equation (2); Creutz (1983), equations (12.15), (13.3), and (13.5); Smit (2002), equation (5.38)

(for Nf = 0)
102Peskin and Schroeder (1995), equation (16.134); Elliott et al (2018), theorem 5.1
103Peskin and Schroeder (1995), equation (15.78)
104C(r) is the quadratic Casimir invariant for the given representation.
105This is typically the fundamental representation, so that each quark field has Nc components when G = SU(Nc).
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31 The case G = U(1)

When the gauged group is G = U(1), a renormalized coupling gR can still be de-
fined as in section 22, but holding that gR fixed as ε/ρ→ 0 doesn’t give a nontrivial
continuum limit.106 This negative result might be intuitively expected because the
continuum action (4) is quadratic (independent of g) when G = U(1).107 It becomes
less intuitive when matter is included, though, as in quantum electrodynamics, be-
cause then the continuum action is not quadratic. Still, the available mathematical
evidence indicates that the continuum limit of quantum electrodynamics is neces-
sarily trivial (no interactions).108 That’s not a problem for real-world applications,
because choosing a value of the interaction strength gR that is consistent with the
real-world electromagnetic interaction is compatible with treating spacetime as a
lattice that is much finer than the resolution of any realistic experiment.109 It’s
not compatible with taking the lattice spacing all the way to zero in physical units,
but we can take the lattice spacing to be effectively zero as far as any realistic
experiment can tell.

On a spacetime lattice, the constructions of quantum electrodynamics (QED)
and quantum chromodynamics (QED) are the same except for the choice of gauged
group G: QED uses G = U(1), and QCD uses G = SU(Nc). This leads to an
overall sign difference in the results that were reviewed in section 30. Section 32
will highlight one consequence of this sign difference. That consequence is a key
part of why QCD is believed to have a nontrivial continuum limit and QED is not.

106What it does give depends on which gR is used. For the gR described in section 22, it doesn’t give a continuum
limit at all: it makes g approach a finite nonzero value (Smit (2002), equations (5.19)-(5.21)), so the correlation
length doesn’t diverge in units of the lattice spacing, which implies that the correlation length goes to zero in units of
ρ when ε/ρ→ 0. We can get a continuum limit by sending g → 0, but that makes the model trivial (no interactions).
107Even though this might be intuitively expected, it is not obvious, because the original action (1) is not quadratic.
108Göckeler et al (1998)
109Quantum electrodynamics doesn’t include any of the non-electromagnetic interactions that are known to exist, so

it already starts to disagree with experiment at resolutions that are much, much too coarse to be noticeably affected
by lattice artifacts (footnote 111 in section 32; McGreevy (2019), section 2.2).
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32 QED compared to QCD

Consider the case d = 4 (four-dimensional spacetime). Use the abbreviation x ≡
log(ε/ρ), so x→ −∞ as ε/ρ→ 0. In QED and QCD, the one-loop approximation
to the beta-function is

d

dx
g2 = sg4, (24)

with s > 0 for QED, and s < 0 for QCD with a sufficiently small number of quark
flavors.110 The general solution of (24) is g2 = 1/(c − sx) for some constant c.
For a continuum limit, we want ε/ρ → 0, so suppose we start with ε/ρ < 1. The
constant c should be such that g2 > 0 for that initial value of ε/ρ. What happens
as ε/ρ decreases depends on the sign of s:

• If s < 0, then c− sx is an increasing function of ε/ρ. It was positive initially,
so it remains positive, and g2 → 0 as ε/ρ→ 0.

• If s > 0, then c− sx is a decreasing function of ε/ρ. It was positive initially,
so it crosses through zero at some finite value of x, say xLP, where LP stands
for Landau pole. Then g2 →∞ (β → 0) as x→ xLP, which implies that the
correlation length for the gauge field goes to zero.

Equation (24) is only approximate (it neglects terms of order g6 and higher), but it
suggests that reaching a nontrivial continuum limit is obstructed when s > 0 but
not when s < 0. The obstruction when s > 0 is called a Landau pole, and the
fact that no such obstruction exists (as far as we know) when s < 0 is consistent
with the assertion that Yang-Mills theory with a nonabelian gauged group has a
nontrivial strict continuum limit.111

110Section 30
111This can be used to quantify the statement that models like QED can still be very useful for physics despite the

absence of a nontrivial strict continuum limit (section 31). Suppose that g2 = g2R/(1− sg2R log(ε/ρ)), which satisfies
equation (24) and is consistent with equation (9). With the values g2R ∼ 0.01 and s ∼ 0.01, which are representative
for QED (equation (23)), the condition g2 � 1 allows | log(ε/ρ)| to be as large as ∼ 100, which is more than enough
to allow ε to be much finer than any practically resolvable scale, even though we can’t take ε/ρ all the way to zero.
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33 Different continuum limits when G = U(1)

The example in this section illustrates that the properties of a continuum limit can
depend on how the limit it taken. This example uses the Villain model that was
mentioned in section 20.112

Consider the case d = 3 and G = U(1). Let L be the correlation length (related
to the mass gap m by L = 1/m), and define λ ≡ L/ε. According to equation (3.1) in
Athenodorou and Teper (2019), the dimensionless correlation length approaches113

λ2 = (cβ)−1 exp(c̃β) (25)

as β → ∞, with β-independent constants c and c̃. When d = 3 and Nid = 1,
equation (3) gives εg2 ∝ 1/β, so multiplying (25) by (εg2)2 gives

(g2L)2 = (εg2)2λ2 ∝ β−3 exp(c̃β). (26)

Equation (25) shows that the continuum limit λ → ∞ corresponds to β → ∞.
Equation (26) shows that g2L → ∞ in that limit, so the limit may be taken in
either of two ways:114 we can keep L finite and let g2 → ∞, or we can keep g2

finite (either nonzero or approaching zero) and let L → ∞. In both cases, the
resulting model has a single species of particle, with no interactions.115 The mass
of the particle is ∝ 1/L.115,116 The zero-mass case is quantum electrodynamics in
three-dimensional spacetime without any matter.117

112The Villain β and the Wilson β are asymptotically equal for large β (Janke and Kleinert (1986), equation (8)),
but those authors also warn that for d = 4, the model based on the Villain action is not a good approximation to
the one based on the Wilson action near the critical value of β (where a phase transition occurs), which is finite for
d = 4.
113Their equation (3.1) is actually for the mass gap (also equation (1.8a) in Göpfert and Mack (1982), equation

(5) in Loan et al (2003), and equation (2.3) in Caselle et al (2015)), which they denote mD. This is related to the
correlation length by L(β) = 1/mD (Göpfert and Mack (1982), text above equation (1.10)).
114No matter how the limit is taken, the quantity εg2 goes to zero because β ∝ 1/(εg2). In other words, g2 goes to

zero when it is expressed in units of 1/ε.
115Athenodorou and Teper (2019), text below equation (3.3)
116Page 552 in Göpfert and Mack (1982) calls this a conjecture. I don’t know why.
117The particle is a photon, which has spin zero when spacetime is three-dimensional (article 26542).
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34 Correlation length and the continuum limit

This section derives a relation between lattice spacing and correlation length in
units of ε that is consistent with the first two terms in the small-coupling expan-
sion118 when d = 4 and G = SU(Nc), assuming that the mass gap is nonzero so
that the correlation length is finite. The result, equation (32), is similar to the
result for d = 3 and G = U(1) that was shown in equation (25).

As in that section, let L be the correlation length, and define λ ≡ L/ε. Equation
(11) gives

−1

2

dg2

d log λ
= γ4g

4 + γ6g
6 +O

(
g8
)
. (27)

To solve this, write it as

−1

2

dg2

γ4g4 + γ6g6 +O (g8)
= d log λ. (28)

Using the abbreviation x ≡ 1/g2, this may also be written

1

2

dx

γ4 + γ6/x+O (1/x2)
= d log λ, (29)

which implies
1

2

dx

γ4

(
1− γ6

γ4x
+O

(
1/x2

))
= d log λ. (30)

Integrating both sides gives

1

2γ4

(
x− γ6

γ4
log x+O(1/x)

)
= log λ+ const. (31)

Ignoring the O(1/x) = O(g2) term, this implies119

λ ∝ f(g) ≡ exp

(
1

2γ4g2

)
gγ6/γ

2
4 . (32)

118This section doesn’t address whether the small-coupling expansion is a good approximation.
119Creutz (1983), equation (13.23); Montvay and Münster (1997), equation (3.267); Kogut (1983), equation (4.60);

Allés et al (1998), equation (14)
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Equation (32) says g → 0 as λ→∞.120 This is consistent with asymptotic freedom.
The shape of the function 1/f(g) is indicated here, using the values of γ4 and γ6

from section 30 with Nc = 3 as an example:

0.0 0.2 0.4 0.6 0.8 1.0
g

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

1/
f(g

) w
ith

 N
c
=

3

The function f(g) diverges very quickly as g → 0. A few of its values are

f(1/2) ≈ 1.6× 1012 f(1/4) ≈ 2.4× 1049 f(1/8) ≈ 5.6× 10198

This shows how rapidly the correlation length grows in units of the lattice spacing
as g → 0, according to equation (32).

1201/f(g)→ 0 as g →∞, too, but only the small-g region is considered here because the derivation of (32) assumed
that g is small.
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