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Positivity in Path Integrals with
Scalar Fields and Gauge Fields

Randy S

Abstract In quantum field theory, models are often constructed using the path
integral formulation, treating spacetime as a very fine lattice so that the math is
straightforward. To ensure that time evolution is unitary in the resulting model,
time evolution in the euclidean path integral construction should be positive
definite. This article explains how to show that it is positive definite in a few
standard families of models, including models with only unconstrained scalar
fields, nonlinear sigma models whose target space is a sphere, principal chiral
models, and Yang-Mills models. This article’s approach differs from the usual
textbook approach by using a path integral that includes an explicit initial state
and that includes only one time-step. This simplifies the analysis and clarifies its
relationship to the general principles of quantum theory.
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1 Introduction

This article addresses a technical issue about models whose field variables are real-
valued, sphere-valued, or group-valued. This includes the models constructed in
article 63548, 51033, and 89053.

Constructing these models directly in the hamiltonian formulation makes their
consistency with the general principles of quantum theory1 clear by inspection, in-
cluding the unitarity of time evolution. In that formulation, time remains continu-
ous even though space is treated as a lattice, and time translations are implemented
by unitary operators e−iHt, where H is the hamiltonian.2 One disadvantage of that
formulation is that it obscures Lorentz symmetry. Treating space as a lattice is not
the issue, because we can reasonably expect deviations from continuous space to be
negligible at resolutions much coarser than the lattice scale. The issue is that the
hamiltonian formulation obscures boost symmetry, so intuitively anticipating the
presence of boost symmetry is difficult without checking the commutation relations
of the operators that allegedly generate those symmetries. Those calculations are
routine, but the outcomes are usually not easy to anticipate by inspection.

The path integral formulation makes Lorentz symmetry easier to anticipate.
Spacetime is treated as a lattice, but again this shouldn’t cause any perceptible
deviations from Lorentz symmetry at resolutions much coarser than the lattice
scale. However, in a näıve path integral formulation, time evolution may fail to be
unitary, even in the continuous-time limit. Article 89053 explains how to fix this
by using Wick rotation. Wick rotation is used to convert the original action in
lorentzian spacetime to a euclidean action, which is then used to construct the
euclidean path integral. After evaluating the path integral, the Wick rotation
can be reversed to change the spacetime signature from euclidean back to lorentzian.
For this to work, time evolution in the euclidean path integral should be positive
definite.3 This article shows that it is, for the models listed above.

1Article 03431
2Article 22871
3More carefully: it should be positive definite for at least one of the lattice actions that is consistent with the

desired continuum limit. It doesn’t need to be (and cannot be) positive definite for all of them.
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2 The structure of the euclidean path integral

Article 89053 explains how Wick rotation is used to construct quantum models
from euclidean path integrals. This article works exclusively with euclidean path
integrals. A euclidean path integral defines a linear transformation from states
to states. This transformation is a euclidean version of time evolution in the
Schrödinger picture. If this transformation is positive definite, then Wick rotation
converts it to a unitary transformation, as required for time evolution in quantum
theory. This section reviews the euclidean version of time evolution, and then the
remaining sections will show that it is positive definite.

In the path integral formulation, the euclidean version of time evolution for a
single time-step4 is given by

Ψ′[u′] = c

∫
[du] e−s[u

′,u]Ψ[u], (1)

where Ψ is the state at the initial time t, Ψ′ is the state at the final time t′ = t+dt,
u is the set of field variables associated with the initial time t, and u′ is the set
of field variables associated with the final time t′. The value of the normalization
factor c > 0 won’t be important here, except for the fact that it is positive. The
function s[u′, u] is the euclidean action for a single time-step. If the field variables
were discrete, then the integral (1) would be a sum and the transformation could be
expressed as matrix multiplication Ψ′ = TΨ. The matrix T is called the transfer
matrix, and this name is still used for the linear transformation defined by (1)
even when the field variables are continuous. The goal is to show that the transfer
matrix is positive definite.

In each of the models considered in this article, the euclidean action may be
written as5,6

s[u′, u] = s2[u
′, u] +

s1[u
′] + s1[u]

2
(2)

4Spacetime is being treated as a lattice, so time is discrete.
5For the models involving gauge fields, this requires using the temporal gauge (section 7).
6Montvay and Münster (1997), section 3.2.6 (for gauge fields)
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using this notation:

• s1 is a part of the action involving field variables at only one time,

• s2 is the part involving products of field variables at both times.

To make the notation more compact, articles 63548, 51033, and 89053 use this
version instead:

s[u′, u] = s2[u
′, u] + s1[u]. (3)

These two forms of the action become indistinguishable in the continuous-time
limit, but they are distinct when time is discrete. The symmetric form (2) makes the
transfer matrix positive definite, which is a convenient (but not strictly necessary)7

way to ensure that time evolution becomes unitary in the continuous-time limit. If
desired, the formulations in articles 63548, 51033, and 89053 could be adjusted to
use the symmetric form (2), but that wouldn’t change the results that matter in
the continuous-time limit.

The transfer matrix is positive definite if and only if the inner product between
TΨ and Ψ is a positive real number for all nonzero functions Ψ in the Hilbert space.
The inner product is

〈Ψ|T |Ψ〉 = c

∫
[du′][du] Ψ∗[u′]e−s[u

′,u]Ψ[u].

If s1[u] is real-valued, then (2) may be used to write this as

〈Ψ|T |Ψ〉 = c

∫
[du′][du] f ∗[u′]e−s2[u′,u]f [u] (4)

with f [u] ≡ e−s1[u]/2Ψ[u]. In all the models considered here, s1[u] is a real-valued
polynomial with a finite lower bound, so if Ψ is square-integrable, then so is f . In
that case, the condition 〈Ψ|T |Ψ〉 > 0 holds for all Ψ with 0 < 〈Ψ|Ψ〉 < ∞ if and
only if it holds for all f with 〈f |f〉 > 0 and for which the integral (4) is defined, so
the remaining sections won’t bother writing the s1 terms.

7It obviously can’t be necessary, because we can always replace a positive definite transfer matrix T (dt) with a
modified transfer matrix T̂ (dt) that approaches T (dt) arbitrarily quickly as dt→ 0.
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3 The main lemma

Let P denote the set of all sums of products of functionals P [u′, u] that have the
factorized form

P [u′, u] = p∗[u′]p[u]. (5)

Any functional of the form (5) satisfies∫
[du′][du] f ∗[u′]P [u′, u′]f [u] ≥ 0 (6)

for all normalizable functionals f [u], because∫
[du′][du] f ∗[u′]p∗[u′]p[u]f [u] =

∣∣∣∣∫ [du] p[u]f [u]

∣∣∣∣2 .
Any product of such factorized functionals also satisfies (6), because such a product
still factorizes as in (5). Any linear combination of such functionals with positive
coefficients clearly also satisfies (6), so all elements of P satisfy (6). Most impor-
tantly for this article, if P [u′, u] is in P , then eP [u′,u] satisfies∫

[du′][du] f ∗[u′]eP [u′,u]f [u] > 0. (7)

This follows from the fact that ex may be expressed as a linear combination of
powers of x with positive coefficients:

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · .

For each of the models considered in the remaining sections, we only need to show
that −s2[u

′, u] is in P , because then (7) implies that the quantity (4) is positive.
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4 Positivity with unconstrained scalar fields

Article 63548 constructs a model in which the field variables are independent real
variables, not subject to any constraints. In this case, the lorentzian path integral
works fine: article 63548 shows that time evolution is already unitary without the
help of Wick rotation. Even though it’s not necessary, we can also construct those
models using a euclidean path integral, and the simplicity of those models makes
this a good warm-up for other models where the euclidean approach is essential.

For any given time, this family of models has a single field variable u[x] for each
point x in space (treated as a lattice), and the s2 part of the action is

s2[u
′, u] = −2κ

∑
x

u′(x)u(x) κ > 0.

The negative of this action is in P because it is a sum of functions of the form (5),
so the general lemma (7) says that the transfer matrix is positive definite in these
models, as desired.
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5 Positivity with sphere-valued fields

This section considers the O(N) model that is constructed in article 51033. The
O(N) model has N field variables at each point in the spacetime lattice. The
field variables at a spatial point x at the initial time t will be denoted uj(x) with
j ∈ {1, ..., N}, and those at a spatial point x at the initial time t will be denoted
u′j(x). The title of this section says sphere-valued because the field variables at
each point in spacetime are defined to satisfy the constraint∑

j

(
uj(x)

)2
= 1.

In this model, the term s2 in the action (2) is

s2[u
′, u] = −2κ

∑
x

∑
j

u′j(x)uj(x) κ > 0.

The same reasoning as in section 4 shows again that the transfer matrix is positive
definite in these models, as desired.
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6 Positivity in principal chiral models

Article 51033 constructs a family of models in which the field variables take values
in a unitary matrix representation ρ of a compact Lie group. Let ū(x) denote the
adjoint of the field variable u(x). The s2 part of the action in these models is

s2[u
′, u] = −κ

∑
x

(
trace

(
u′(x)ū(x)

)
+ c.c.

)
with κ > 0. To use the lemma (7), we only need to show that the function

P [u′, u] ≡ trace
(
u′(x)ū(x)

)
is in P . Here’s the proof:

trace
(
u′(x)ū(x)

)
=
∑
j,k

(
u′(x)

)
kj

(
ū(x)

)
jk

=
∑
j,k

(
ū′(x)

)
jk

(
ū(x)

)
jk
.

The first step is just the definition of the trace. The last step used the fact that
the matrix representation is unitary. The last line is a sum of functions of the form
(5), so lemma (7) implies that the transfer matrix is positive definite, as desired.
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7 Positivity in models with gauge fields

Article 89053 constructs another family of models in which the field variables take
values in a unitary matrix representation of a compact Lie group, like in section 6,
but now the field variables are associated with links of the lattice instead of with
sites of the lattice. The gauge-invariant form of the action involves products of four
link variables (associated with the four links around the perimeter of a plaquette),
but in the temporal gauge,8 that part of the action reduces to

s2[u
′, u] = −κ

∑
`

(
trace

(
u′(`)ū(`)

)
+ c.c.

)
with κ > 0, where the sum is over links ` instead of over sites x. In this context,
the link (or site) is nothing more than an index used to label the different field
variables, so the proof that the transfer matrix is positive works just like it did in
section 6.

8Articles 89053 and 00951
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8 Reflection positivity

This article described a way to prove positivity of the transfer matrix in models
whose lattice action has only nearest-neighbor interactions,9 in the sense that it
does not involve any products of field operators separated by more than one time-
step. That’s the context in which equation (1) makes sense. A more generally
applicable approach is to use reflection positivity, which can be used in the
context of a path integral without any explicitly-specified initial or final state.10

To define reflection positivity, consider a model defined on a d-dimensional
hypercubic spacetime lattice, and let t0 be any value of the time coordinate that
may either be a time occupied by lattice sites (for site-reflection positivity) or
a time halfway between two times occupied by lattice sites (for link-reflection
positivity). Reflection positivity means that the model has an antilinear mapping
Θ from functions F of the field variables at times t > t0 to those at times t < t0
such that the expectation value of (ΘF )F is always nonnegative.11 Either site- or
link-reflection positivity can be used to deduce the positivity of T 2, the transfer
matrix for two consecutive time-steps.12 That’s sufficient for proving the existence
of a Hilbert space and the existence of a Hamiltonian whose spectrum has a lower
bound. If site- and link-reflection positivity both hold, then the positivity of T
itself can be deduced.13 The models considered in this article satisfy reflection
positivity of both types,14 implying that T itself is positive. That’s consistent with
the results derived in this article.

9The word interaction has different meanings in quantum field theory. It often refers to any term in the action
involving a product of field variables with three or more factors (higher than quadratic), but here it means any term
in the action involving a product of field operators, even if it’s only quadratic.

10Article 63548
11Montvay and Münster (1997), equation (4.90)
12The text below equation (21) in Usui (2012) says that link-reflection positivity is sufficient for this even in models

whose action involves non-nearest-neighbor interactions.
13Montvay and Münster (1997), end of section 1.5.3 and end of section 4.2.3; Menotti and Pelissetto (1987); Usui

(2012), text below equation (49)
14Montvay and Münster (1997), end of section 1.5.3 (for scalar fields); Montvay and Münster (1997), section 3.2.8

(for gauge fields); Menotti and Pelissetto (1987); (for gauge fields); Usui (2012), beginning of section 3.3
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