Homotopy Sets

Randy S

Abstract

If X and Y are topological spaces and f is a map from X to Y, then the homotopy class $[f]$ is the set of all maps from X to Y that are homotopic to f, which roughly means they can be continuously morphed to f. The (free) homotopy set $[X, Y]$ is the set whose elements are homotopy classes of maps from X to Y. The based homotopy set is defined similarly, but using only homotopies that preserve a designated basepoint in X and in Y. The study of homotopy sets is a prominent part of the study of topology. Homotopy groups (article 61813) and cohomology groups (article 28539) may both be expressed as special families of homotopy sets equipped with a natural group structure. This article gathers some results about homotopy sets, with special attention given to the example $\left[T^{3}, S U(k)\right]$ where T^{3} is a 3 -torus and $S U(k)$ is a special unitary group.

Contents

1 Conventions and notation 3
2 Free homotopy sets 4
3 Based homotopy sets 5
4 When free and based homotopy sets are equal 6
$5 \quad n$-equivalence 7
(C) 2018-2024 Randy S
For the latest version and the revision history, visit cphysics.org/article/69958
$6 \quad n$-equivalence for large n 8
$7 \quad\left[M, S^{n}\right]$ when M is n-dimensional 9
8 The wedge sum and the smash product 10
9 Examples 11
$10\left[T^{2}, M\right]$ when M is 1 -connected 12
11 A warning about concatenated homotopies 13
12 Nontriviality of $\left[T^{3}, S U(k)\right]$ 14
13 Nontriviality of $\left[T^{3}, S U(3)\right]$: cross-check 15
14 Homotopy sets and cohomology 17
15 Example 18
16 References 19
17 References in this series 21

1 Conventions and notation

- Map means continuous map, and function means continuous function.
- Each topological space is assumed to be homeomorphic to a CW complex. $\left[^{1} 1^{2}\right.$
- S^{n} is an n-dimensional sphere, also called an \boldsymbol{n}-sphere.
- T^{n} is an n-dimensional torus (the cartesian product of n circles), also called an \boldsymbol{n}-torus.
- \mathbb{Z} is the integers, \mathbb{Z}_{k} is the integers modulo k, and \mathbb{R} is the real numbers.
- Section 2 will introduce $[X, Y]$, the set of free homotopy classes of maps from one topological space X to another topological space Y.
- Section 3 will introduce $[X, Y]_{0}$, the set of based homotopy classes of maps.
- $\pi_{j}(X)$ is the j th homotopy group of a topological space $\left.X.\right]^{3}$
- A topological space X is called \boldsymbol{n}-connected if $\pi_{j}(X)$ is trivial for all $j \leq n$.3 In particular, 1-connected means $\pi_{0}(X)$ and $\pi_{1}(X)$ are both trivial. The word connected by itself is an abbreviation for 0 -connected.
- $H^{j}(X ; \mathbb{Z})$ is the j th integer cohomology group of a topological space X.
- $U(k)$ and $S U(k)$ are the unitary and special unitary groups.
- A group or homotopy set is called trivial if it has only one element.
- If G and H are groups, then $G \simeq H$ means G and H are isomorphic to each other. If X and Y are topological spaces, then $X \simeq Y$ means X and Y are homeomorphic to each other.

[^0]
2 Free homotopy sets

Article 61813 introduces the concept of homotopy. Intuitively, a homotopy from one map $f: X \rightarrow Y$ to another map $g: X \rightarrow Y$ is a continuous deformation from $f(X)$ to $g(X)$ within Y. If a homotopy exists between f and g, then f and g are said to be homotopic to each other. For any given $f: X \rightarrow Y$, the set $[f]$ of all maps homotopic to f is called a homotopy class. A map $f: X \rightarrow Y$ is called nullhomotopic if it's homotopic to a constant map, which is a map that sends all of X to a single point of Y.

When X and Y are topological spaces, $[X, Y]$ denotes the set of homotopy classes of maps from X to Y. Each element of $[X, Y]$ is a homotopy class $[f]$ of maps $f: X \rightarrow Y$. Section 1 in Čadek et al (2014) says,

A central theme in algebraic topology is to understand, for given topological spaces X and Y, the set $[X, Y]$ of homotopy classes of maps from X to Y. Many of the celebrated results throughout the history of topology can be cast as information about $[X, Y]$ for particular spaces X and Y.

This article is motivated by applications to the study of principal G-bundles, ${ }^{5}$ which are important in quantum field theory with gauge invariance.

[^1]
3 Based homotopy sets

If we choose a point $x_{0} \in X$ and a point $y_{0} \in Y$, then a homotopy that preserves the relationship $x_{0} \rightarrow y_{0}$ throughout the deformation process is called a based homotopy. The points x_{0}, y_{0} are called basepoints. Each element of the based (or pointed) homotopy set $[X, Y]_{0}$ is an equivalence class $[f]_{0}$ of maps using based homotopy as the equivalence relation. If Y is connected, then the homotopy group $\pi_{n}(Y)$ may be defined as the set $\left[S^{n}, Y\right]_{0}$ equipped with an appropriate group operation: $[6$

$$
\begin{equation*}
\pi_{n}(Y)=\left[S^{n}, Y\right]_{0} \tag{1}
\end{equation*}
$$

The set $[X, Y]$ is sometimes called a free homotopy set ${ }^{77}$ to distinguish it from the based homotopy set $[X, Y]_{0}$. The class $[f]_{0}$ is a subset of the class $[f]$, because $[f]$ includes all maps that are homotopic to f, whether or not they respect the basepoints. 8

The notation $[X, Y]_{0}$ is common, 9$]^{10}$ but sources that don't use free homotopy sets often use $[X, Y]$ to denote the based homotopy set. $\left.{ }^{[11}\right|^{12}$

[^2]
4 When free and based homotopy sets are equal

Suppose that X and Y are both connected CW complexes ${ }^{[13]}$ The free homotopy set $[X, Y]$ and the based homotopy set $[X, Y]_{0}$ are not always equal to each other, but they are in these cases, among others:

- If Y is 1-connected, ${ }^{[14}$ then $[X, Y]=[X, Y]_{0} \cdot{ }^{15}$
- If Y is a connected \mathbf{H}-space, then $[X, Y]=[X, Y]_{0} .{ }^{[16}$ Every topological group (which includes every Lie group) is an H-space. ${ }^{17}$

If X and Y are connected, then $[X, Y]$ is equal to $[X, Y]_{0}$ modulo an appropriate action of $\left.\pi_{1}(Y),{ }^{[18}\right]^{19}$ so they're equal to each other whenever that action is trivial.

A space Y is called \boldsymbol{n}-simple if the action of $\pi_{1}(Y)$ on $\pi_{n}(Y)$ is trivial. ${ }^{20}$ A space Y is 1 -simple if and only if $\pi_{1}(Y)$ is abelian. ${ }^{21}$ Using equation (1), that result may also be expressed this way:

- If $\pi_{1}(Y)$ is abelian, then $\left[S^{1}, Y\right]=\left[S^{1}, Y\right]_{0}$.

[^3]
$5 n$-equivalence

Consider two CW complexes X and Y. Any map $f: X \rightarrow Y$ induces maps

$$
\begin{equation*}
f_{*}:[A, X]_{0} \rightarrow[A, Y]_{0} \tag{2}
\end{equation*}
$$

for all A, because each map $A \rightarrow X$ may be composed with f to get a map $A \rightarrow Y$. For the same reason, $f: X \rightarrow Y$ induces maps

$$
\begin{equation*}
f_{*}: \pi_{j}(X, x) \rightarrow \pi_{j}(Y, f(x)) \tag{3}
\end{equation*}
$$

of homotopy groups with the indicated basepoints. The induced maps (2)-(3) are not always bijective, ${ }^{22}$ but if A is a CW complex and n is any positive integer, these two conditions are equivalent to each other. ${ }^{23}$

- the map (2) is bijective when $\operatorname{dim} A<n$ and surjective when $\operatorname{dim} A=n$,
- the map (3) is bijective when $j<n$ and surjective ${ }^{24}$ when $j=n$. In other words, f is an \boldsymbol{n}-equivalence. ${ }^{25}$

For most maps $X \rightarrow Y$, neither of these conditions holds, but if either one of them does hold, then so does the other one.

[^4]
6 -equivalence for large n

If the induced maps (3) are isomorphisms for all j, then f is called a weak homotopy equivalence. ${ }^{26}$ If X and Y are CW complexes, then a weak homotopy equivalence is a homotopy equivalence, ${ }^{27}$ so in this case the induced map (2) is bijective for all CW complexes $A .{ }^{28}$

A similar result is true for finite n if X and Y are both CW complexes with dimension less than n : in this case, an n-equivalence between X and Y is a homotopy equivalence, ${ }^{29}$ which again implies that (2) is bijective for all A.

[^5]
$7 \quad\left[M, S^{n}\right]$ when M is n-dimensional

If M is a closed, compact, connected, and oriented n-dimensional manifold, then $\left[M, S^{n}\right] \simeq \mathbb{Z}$, where the integer assigned to a map $M \rightarrow S^{n}$ is called the degree of the map. ${ }^{30}$ When $M=S^{n}$, this may also be written $\pi_{n}\left(S^{n}\right) \simeq \mathbb{Z}$.

To construct an example of a map $M \rightarrow S^{n}$ that is nullhomotopic, choose any n-dimensional ball U in M, and choose any point p in S^{n}. A map $f: M \rightarrow S^{n}$ with $f: U \rightarrow S^{n} \backslash p$ bijective and $f(M \backslash U)=p$ is not nullhomotopic. ${ }^{31}{ }^{32}$

A map $X \rightarrow Y$ is called surjective if every element of Y is the image of at least one element of X. A map $M \rightarrow S^{n}$ with nonzero degree is surjective, ${ }^{[33}$ but it's not a covering map in the sense defined in article 61813. A covering map $X \rightarrow Y$ assigns k points of X to each point of Y, with the same k everywhere. Any covering map from a sphere S^{n} to itself necessarily has $|k|=1$. A generic continuous map $S^{n} \rightarrow S^{n}$ may have any degree, but such a map cannot be k-to- 1 with the same k everywhere. To construct an example of a map $S^{n} \rightarrow S^{n}$ with degree 2, think of S^{n} as the set of points $\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1}$ with $\sum_{j} x_{j}^{2}=1$. Write $x_{0}=\cos \theta$ and $x_{j}=\hat{x}_{j} \sin \theta$ for $j \in\{1, \ldots, n\}$ with $\sum_{j} \hat{x}_{j}^{2}=1$ and $0 \leq \theta \leq \pi$. Then the map $S^{n} \rightarrow S^{n}$ defined by $\left(\theta, \hat{x}_{j}\right) \rightarrow\left(2 \theta, \hat{x}_{j}\right)$ has degree 2 . This map is 2 -to- 1 almost everywhere, but not where θ is an integer multiple of $\pi / 2$, because it sends the whole equator $\left(x_{0}=0\right)$ of the first S^{n} to a single point $\left(x_{0}=-1\right)$ of the second S^{n}.

[^6]
8 The wedge sum and the smash product

An n-torus, denoted T^{n}, is a cartesian product of n circles. In particular, $T^{2}=$ $S^{1} \times S^{1}$. Section 10 will determine $\left[T^{2}, M\right]$ when M is 1 -connected. This section introduces some of the ingredients in that calculation.

Consider two topological spaces X and Y with designated basepoints $x_{0} \in X$ and $y_{0} \in Y$. Their wedge sum, denoted $X \vee Y$, is the subset of their cartesian product $X \times Y$ defined by the union of $X \times y_{0}$ and $x_{0} \times Y{ }^{34}{ }^{35}$ Given two maps $f: X \rightarrow M$ and $g: Y \rightarrow M$, a map $\{f, g\}: X \vee Y \rightarrow M$ can be defined for which the induced map

$$
\begin{equation*}
[X, M]_{0} \times[Y, M]_{0} \rightarrow[X \vee Y, M]_{0} \tag{4}
\end{equation*}
$$

given by $([f],[g]) \mapsto[\{f, g\}]$ is bijective ${ }_{{ }^{36} \mid 37}^{37}$
The smash product of two spaces X and Y, denoted $X \wedge Y$, is defined by starting with $X \times Y$ and then collapsing a wedge $X \vee Y \subset X \times Y$ to a single point. ${ }^{344}$

$$
X \wedge Y \equiv \frac{X \times Y}{X \vee Y}
$$

Section 9 will use easy examples to illustrate these things.

[^7]
9 Examples

The wedge sum $S^{1} \vee S^{1}$ is a pair of circles that intersect each other at a single point, so it has the same topology as the symbol ∞. The two-dimensional real projective space $\mathbb{R} \mathrm{P}^{2}$ has fundamental group ${ }^{38}$

$$
\left[S^{1}, \mathbb{R P}^{2}\right]_{0}=\pi_{1}\left(\mathbb{R} \mathrm{P}^{2}\right)=\mathbb{Z}_{2}
$$

Use this in the bijection (4) to get

$$
\left[S^{1} \vee S^{1}, \mathbb{R P}^{2}\right]_{0} \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

which shows the number of classes of based homotopies from $S^{1} \vee S^{1}$ to $\mathbb{R P}^{2}$ is four.

The space $S^{1} \vee S^{1}$ is not a manifold, because the point where the circles intersect does not have an open neighborhood homeomorphic to any euclidean space, but it is a CW complex: it is made from two 1-cells whose endpoints meet at a single 0 -cell.

The torus T^{2} may also be given the structure of a CW complex in which $S^{1} \vee S^{1}$ is a subcomplex: it is made from a subset of the cells from which T^{2} is made. To deduce this, think of the torus $T^{2}=S^{1} \times S^{1}$ as a rectangle with opposite sides identified. Let U denote the interior of this rectangle. This is a 2-cell. The remainder $T^{2} \backslash U$ is the boundary of the rectangle, and identifying opposite sides makes it a wedge sum of two circles: $T^{2} \backslash U \simeq S^{1} \vee S^{1}$. Altogether, this represents the torus as the union of a 2-cell U and a 1-dimensional subcomplex $S^{1} \vee S^{1}$.

The smash product of two circles is a 2 -sphere. We can deduce this by using the representation in the preceding paragraph. The smash product $S^{1} \wedge S^{1}=$ $T^{2} /\left(S^{1} \vee S^{1}\right)$ is defined by treating the rectangle's boundary $S^{1} \vee S^{1}$ as a single point. The rectangle's interior is homeomorphic to the interior of a disk, so $S^{1} \wedge S^{1}$ is topologically the same as treating a disk's boundary as a single point. This gives a sphere S^{2}.

[^8]
$10\left[T^{2}, M\right]$ when M is 1 -connected

This section shows that if a CW complex M is 1-connected, then the set $\pi_{2}(M)$ is the same as $\left[T^{2}, M\right] \cdot{ }^{39}$

If a CW complex A is a subcomplex of a CW complex X, then the inclusion $A \rightarrow X$ qualifies as something called a cofibration. ${ }^{40}$ If an inclusion $A \rightarrow X$ is a cofibration, then this sequence is exact: 41

$$
[\text { point }, M] \rightarrow[X / A, M] \rightarrow[X, M] \rightarrow[A, M],
$$

where the second map is the pullback of the projection $X \rightarrow X / A$ and the third one is the pullback of the inclusion $A \rightarrow X$. Applying this to the case described in section 9 gives an exact sequence

$$
\begin{equation*}
\text { (one-element set) } \rightarrow\left[S^{2}, M\right] \rightarrow\left[T^{2}, M\right] \rightarrow\left[S^{1} \vee S^{1}, M\right] \tag{5}
\end{equation*}
$$

Now suppose that M is 1 -connected. In this case, the based homotopy set $[X, M]_{0}$ is the same as the free homotopy set $[X, M]$, and the homotopy groups $\pi_{j}(M)$ are the same (as sets) as the free homotopy sets $\left[S^{j}, M\right] .{ }^{42}$ Use these facts in (5), together with the bijection (4) to get an exact sequence

$$
\begin{equation*}
\text { (one-element set) } \rightarrow \pi_{2}(M) \rightarrow\left[T^{2}, M\right] \rightarrow \text { (one-element set). } \tag{6}
\end{equation*}
$$

The exactness of (6) implies that the set $\pi_{2}(M)$ is the same as $\left[T^{2}, M\right]$, as claimed at the beginning of this section.

[^9]
11 A warning about concatenated homotopies

Sections $12-12$ will show that $\left[T^{3}, S U(k)\right]$ is nontrivial for $k \geq 2$. The hardest step is showing that $\left[T^{3}, S U(3)\right]$ is nontrivial. We might be tempted to show this using maps of the form $T^{3} \rightarrow S^{3} \rightarrow S U(3)$, because we know that $\left[T^{3}, S^{3}\right]$ and $\left[S^{3}, S U(3)\right]$ are both nontrivial. ${ }^{43}$ This doesn't automatically imply that $\left[T^{3}, S U(3)\right]$ is also nontrivial, though, because a map $X \rightarrow Z$ of the form $X \rightarrow Y \rightarrow Z$ may be homotopic to a constant map even if the constituent maps $X \rightarrow Y$ and $Y \rightarrow Z$ are not. This section describes examples of that phenomenon.

For one example, use $X=Y=S^{1}$ and $Z=\mathbb{R} P^{2}$. Represent S^{1} as the unit circle in the complex plane, and take the map $X \rightarrow Y$ to be the double-covering defined by $e^{i \theta} \mapsto e^{i 2 \theta}$. To describe the map $Y \rightarrow Z$, use a pair of coordinates (a, b) to denote points of \mathbb{R}^{2}, and think of $\mathbb{R} P^{2}$ as a disk in \mathbb{R}^{2} of radius π with opposite points of its boundary identified with each other. Define a map $Y \rightarrow Z$ by $e^{i \theta} \mapsto(\theta, 0)$ for $-\pi<\theta \leq \pi$. Then the maps $X \rightarrow Y$ and $Y \rightarrow Z$ are both homotopically nontrivial (neither one can be continuously morphed to a constant map), but their composition can be continuously morphed to a constant map. ${ }^{44}$

The same phenomenon occurs with $Z=\mathbb{R} \mathrm{P}^{3}$ in place of $Z=\mathbb{R P}^{2}$, which shows that it can occur even when X, Y, Z are all orientable manifolds.

The phenomenon can still occur if X, Y, Z are all 1-connected orientable manifolds. In particular, it occurs when $X=S^{4}, Y=S^{3}$, and $Z=S U(3)$. In this case, all compositions $X \rightarrow Y \rightarrow Z$ are homotopically trivial because $\pi_{4}(S U(3))=0$, even though both individual maps in the composition may be homotopically nontrivial because $\pi_{4}\left(S^{3}\right)=\mathbb{Z}_{2}$ and $\pi_{3}(S U(3))=\mathbb{Z} \stackrel{4}{45}^{45}$

[^10]
12 Nontriviality of [$\left.T^{3}, S U(k)\right]$

The fact that $\left[T^{3}, S U(2)\right]$ is nontrivial follows from the homeomorphism ${ }^{46} S U(2) \simeq$ S^{3} combined with the fact that $\left[M, S^{3}\right] \simeq \mathbb{Z}$ for any closed 3-dimensional manifold $M \stackrel{47}{4}$

To show that $\left[T^{3}, S U(k)\right]$ is nontrivial for all $k \geq 2$, we can use another result that relates the case k to the case $k+1$. If $E \rightarrow B$ is a fiber bundle with fiber F, then this sequence of induced maps between homotopy groups is exact. ${ }^{48]}$

$$
\begin{equation*}
\cdots \rightarrow \pi_{j+1}(B) \rightarrow \pi_{j}(F) \rightarrow \pi_{j}(E) \rightarrow \pi_{j}(B) \rightarrow \cdots \rightarrow \pi_{1}(B) \tag{7}
\end{equation*}
$$

This is called the homotopy sequence of the bundle $4^{49} \mathrm{Set}^{50}$

$$
F=S U(k) \quad E=S U(k+1) \quad B=S U(k+1) / S U(k)
$$

and use the relationship $\51

$$
S U(k+1) / S U(k) \simeq S^{2 k+1} \text { for } k \geq 2 \quad \pi_{j}\left(S^{2 k+1}\right)=0 \text { for } j \leq 2 k
$$

to conclude that $\pi_{j}(F) \rightarrow \pi_{j}(E)$ is bijective for $j<2 k$ and surjective for $j=2 k$, and then use section 5 to conclude that $\left[T^{n}, S U(k)\right]$ and $\left[T^{n}, S U(k+1)\right]$ have the same number of elements if $n<2 k$. Set $n=3$ and $k=2$ to deduce that $\left[T^{3}, S U(2)\right.$] and $\left[T^{3}, S U(3)\right]$ have the same number of elements, which implies that $\left[T^{3}, S U(4)\right]$ also has the same number of elements, and so on. We already know that $\left[T^{3}, S U(2)\right]$ is nontrivial..52 so this shows that $\left[T^{3}, S U(k)\right]$ is nontrivial for every $k \geq 2$.

[^11]
13 Nontriviality of $\left[T^{3}, S U(3)\right]$: cross-check

As a cross-check, this section uses a different method to rederive the fact that [$\left.T^{3}, S U(3)\right]$ is nontrivial.

The Lie group $S U(3)$ and the product $S^{3} \times S^{5}$ are both 8-dimensional manifolds. They are not homeomorphic to each other ${ }^{[53}$ but they do have the same homology groups, ${ }^{54}$ so they are more similar to each other than the number of dimensions alone would suggest. This section shows that $\left[T^{3}, S^{3} \times S^{5}\right]$ is nontrivial and then uses that result to deduce that $\left[T^{3}, S U(3)\right]$ must also be nontrivial.

To show that $\left[T^{3}, S^{3} \times S^{5}\right]$ is nontrivial, use the general relationship ${ }^{[55}\left[{ }^{56}\right.$

$$
\begin{equation*}
[X, A \times B] \simeq[X, A] \times[X, B] \tag{8}
\end{equation*}
$$

Using the relationship ${ }^{57}$

$$
\left[T^{3}, S^{3}\right] \simeq \mathbb{Z}
$$

in (8) shows that $\left[T^{3}, S^{3} \times S^{5}\right]$ has at least as many elements as \mathbb{Z}.
The next goal is to relate $\left[T^{3}, S^{3} \times S^{5}\right]$ to $\left[T^{3}, S U(3)\right]$. This will be done by establishing the existence of a map $f: S^{3} \times S^{5} \rightarrow S U(3)$ for which the induced homomorphisms $\pi_{j}\left(S^{3} \times S^{5}\right) \rightarrow \pi_{j}(S U(3))$ are bijective for $j \leq 3$ and surjective for $j=4$. This is automatic for $j \in\{1,2,4\}{ }^{58}$ but the case $j=3$ depends on the map $f 59$ If such a map does exist, then the lemma reviewed in section 5 implies that the induced map $\left[T^{3}, S^{3} \times S^{5}\right] \rightarrow\left[T^{3}, S U(3)\right]$ is bijective, and combining this with the previous paragraph shows that $\left[T^{3}, S U(3)\right]$ is nontrivial.

The remaining task is to establish the existence of a map $f: S^{3} \times S^{5} \rightarrow S U(3)$ for which the induced homomorphism $\pi_{3}\left(S^{3} \times S^{5}\right) \rightarrow \pi_{3}(S U(3))$ is bijective. The man-

[^12]ifolds $S U(2)$ and S^{3} are homeomorphic to each other ${ }^{[60}$ so we can think of $S^{3} \times S^{5}$ as the total space of a (trivial) principal $S U(2)$-bundle over S^{5}. The quotient manifold $S U(3) / S U(2)$ is homeomorphic to S^{5},60 we can also think of $S U(3)$ as the total space of a (nontrivial) principal $S U(2)$-bundle over S^{5}. Up to isomorphism, these are the only two principal $S U(2)$-bundles over $S^{5} \cdot{ }^{61}{ }^{61}$ To construct a map f with the desired property, start with the nontrivial bundle $S U(3) \rightarrow S^{5}$, choose a map $g: S^{5} \rightarrow S^{5}$ of degree $2{ }^{63}$ and consider the pullback of the nontrivial bundle by this map. ${ }^{[64][65}$ Principal $S U(2)$-bundles over S^{5} are classified by $\pi_{4}(S U(2)) \simeq \mathbb{Z}_{2}$, so the fact that g has degree 2 implies that the resulting bundle must be the trivial bundle with total space $S^{3} \times S^{5}$. This relationship between the two bundles provides a map $f: S^{3} \times S^{5} \rightarrow S U(3)$ from one total space to the other ${ }^{66]}$

To show that this map f induces a bijection $\pi_{3}\left(S^{3} \times S^{5}\right) \rightarrow \pi_{3}(S U(3))$, use this general property of pullback bundles: if the original bundle is $E \rightarrow B$ and the map $f: B^{\prime} \rightarrow B$ gives the pullback bundle $E^{\prime} \rightarrow B^{\prime}$, then this induced sequence of homotopy groups is exact. $\sqrt[67]{67}$

$$
\cdots \rightarrow \pi_{j+1}(B) \rightarrow \pi_{j}\left(E^{\prime}\right) \rightarrow \pi_{j}(E) \oplus \pi_{j}\left(B^{\prime}\right) \rightarrow \pi_{j}(B) \rightarrow \cdots
$$

Set $B=B^{\prime}=S^{5}, E^{\prime}=S^{3} \times S^{5}$, and $E=S U(3)$ and use $\pi_{j}\left(S^{5}\right)=0$ for $j \leq 4$ to infer $\pi_{j}\left(E^{\prime}\right) \simeq \pi_{j}(E)$ for $j \leq 3$. This shows that f has the desired property, which is the last ingredient we needed to complete the proof that $\left[T^{3}, S U(3)\right]$ is nontrivial.

[^13]
14 Homotopy sets and cohomology

Section 3 reviewed how homotopy groups may be expressed in terms of homotopy sets. This section reviews how cohomology groups may be expressed in terms of homotopy sets. ${ }^{68}$

Choose a group G and a positive integer n. A topological space X with the property

$$
\pi_{k}(X)= \begin{cases}G & \text { if } k=n \\ 0 & \text { otherwise }\end{cases}
$$

is called an Eilenberg-MacLane space ${ }^{69}$ denoted $K(G, n)$. A CW complex satisfying this condition exists for each group G if $n=1$ and for each abelian group if $\left.n \geq 2 \cdot{ }^{[70}\right]^{71}$ It is determined uniquely by G and n up to homotopy equivalence $\sqrt{727}$

When G is abelian, Eilenberg-MacLane spaces are important because of their relationship to cohomology groups. The homotopy set $[X, K(G, n)]$ can be given the structure of an abelian group in a natural way. ${ }^{73]}$ If X is a CW complex, G is an abelian group, and $K(G, n)$ is an Eilenberg-MacLane space, then the group $[X, K(G, n)]$ and the cohomology group $H^{n}(X ; G)$ are isomorphic to each other: $\left.:^{774}\right]^{75}$

$$
\begin{equation*}
[X, K(G, n)] \simeq H^{n}(X ; G) \tag{9}
\end{equation*}
$$

The isomorphism is called the Eilenberg-MacLane map. ${ }^{76}$

[^14]
15 Example

The circle S^{1} is a $\left.\left.K(\mathbb{Z}, 1)\right)^{[77}\right]^{78}$ Use this in equation (9) to get

$$
[M, U(1)] \simeq\left[M, S^{1}\right] \simeq[M, K(\mathbb{Z}, 1)] \simeq H^{1}(M ; \mathbb{Z})
$$

This says that homotopy classes of maps $M \rightarrow U(1)$ correspond one-to-one with elements of the first cohomology group $H^{1}(M ; \mathbb{Z})$.

[^15]
16 References

Arkowitz, 2011. Introduction to Homotopy Theory. Springer
Bott and Tu, 1982. Differential Forms in Algebraic Topology. Springer
Čadek et al, 2014. "Computing All Maps into a Sphere" Journal of the ACM 61: 1-44, https://arxiv.org/abs/1105.6257

Cohen, 2023. "Bundles, Homotopy, and Manifolds" http://virtualmath1. stanford.edu/~ralph/book.pdf

Davis and Kirk, 2001. Lecture Notes in Algebraic Topology. American Mathematical Society

Frankland, 2013. "Math 527 - Homotopy theory, additional notes" https: //uregina.ca/~franklam/Math527/Math527_0211.pdf

Hatcher, 2001. "Algebraic Topology" https://pi.math.cornell.edu/~hatcher/ AT/AT.pdf

Hirsch, 1976. Differential Topology. Springer-Verlag
Husemöller et al, 2008. Basic Bundle Theory and K-Cohomology Invariants. Springer

Kosinski, 1993. Differential Manifolds. Academic Press
Lafont and Neofytidis, 2019. "Sets of degrees of maps between $\mathrm{SU}(2)$-bundles over the 5-sphere" Transform. Groups 24: 1147-1155, https://arxiv.org/ abs/1710.10440

Matumoto et al, 1984. "On the set of free homotopy classes and Brown's construction" Hiroshima Math. J. 14: 359-369, https://projecteuclid.org/ euclid.hmj/1206133043

Maxim, 2013. "Math 752 Topology Lecture Notes" https://people.math. wisc.edu/~1maxim/752notes.pdf

May, 2007. "A Concise Course in Algebraic Topology" http://www.math.uchicago . edu/~may/CONCISE/ConciseRevised.pdf

May and Ponto, 2012. More Concise Algebraic Topology: localization, completion, and model categories. University of Chicago Press, https://www.math. uchicago.edu/~may/TEAK/KateBookFinal.pdf

Mimura and Toda, 1991. Topology of Lie Groups, I and II. American Mathematical Society

Mitchell, 1997. "CW-complexes" https://sites.math.washington.edu//~mitchell/Morse/cw.pdf
Steenrod, 1951. The Topology of Fibre Bundles. Princeton University Press
Wang, 2021a. "Degrees of maps between S^{3}-bundles over S^{5} " Topology and its Applications 291: 107610, https://arxiv.org/abs/1810.10154

Wang, 2021b. "On 1-connected 8-manifolds with the Same Homology as $S^{3} \times$ $S^{5 "}$ Acta Mathematica Sinica, English Series 37: 941-956, https://arxiv. org/abs/1810.08478

Whitehead, 1978. Elements of Homotopy Theory. Springer

17 References in this series

Article 28539 (https://cphysics.org/article/28539):
"Homology Groups" (version 2024-05-19)
Article 29682 (https://cphysics.org/article/29682):
"A Quick Review of Group Theory: Homomorphisms, Quotient Groups, Representations, and Extensions" (version 2024-05-21)

Article 33600 (https://cphysics.org/article/33600):
"Constructing Principal Bundles from Patches" (version 2024-05-19)
Article 35490 (https://cphysics.org/article/35490):
"Universal Principal Bundles" (version 2024-05-19)
Article 61813 (https://cphysics.org/article/61813):
"Homotopy, Homotopy Groups, and Covering Spaces" (version 2024-05-19)
Article 81674 (https://cphysics.org/article/81674):
"The Wedge Product and the Definition of the Determinant" (version 2024-05-21)
Article 92035 (https://cphysics.org/article/92035):
"The Topology of Lie Groups: a Collection of Results" (version 2024-05-21)
Article 93875 (https://cphysics.org/article/93875):
"From Topological Spaces to Smooth Manifolds" (version 2024-03-24)

[^0]: ${ }^{1}$ Article 93875 defines CW complex.
 ${ }^{2}$ Every smooth manifold is homeomorphic to a CW complex (article 93875 .
 ${ }^{3}$ Article 61813
 ${ }^{4}$ Article 28539

[^1]: ${ }^{5}$ Article 33600

[^2]: ${ }^{6}$ Whitehead (1978), section III.5, text above corollary 5.23; May (2007), section 9.1
 ${ }^{7}$ Matumoto et al (1984), section 1
 ${ }^{8}$ Article 61813 describes an example where $[f]_{0}$ and $[f]$ differ, and https://math.stackexchange.com/ questions/2118574/ describes another one.
 ${ }^{9}$ Davis and Kirk (2001), section 6.9; Mimura and Toda (1991), section 4.1
 ${ }^{10}$ Hatcher (2001) writes $\langle X, Y\rangle$ instead of $[X, Y]_{0}$ (text above proposition 4.22).
 ${ }^{11}$ May (2007), section 8.1; May and Ponto (2012), beginning of section 1.4; Arkowitz (2011), page viii
 ${ }^{12}$ The beginning of section 7.1 in Cohen (2023) says, "In this chapter, unless otherwise specified, we will assume that all spaces are connected and come equipped with a basepoint. When we write $[X, Y]$ we mean homotopy classes of basepoint preserving maps $X \rightarrow Y$."

[^3]: ${ }^{13}$ The sources cited in footnotes 15 and 16 assume that the spaces are compactly generated. Every CW complex has that property (article 93875). They also assume that the basepoints are nondegenerate (Davis and Kirk (2001), definition 6.31; May and Ponto (2012), beginning of section 1.1). Again, every CW complex has that property (Frankland (2013), example 1.2).
 ${ }^{14}$ Section 1 defines 1-connected.
 ${ }^{15}$ Davis and Kirk (2001), corollary 6.59
 ${ }^{16}$ May and Ponto (2012), proposition 1.4.3 (and comment 0.0 .3 on page xxii for the connected premise)
 ${ }^{17}$ Whitehead (1978), section III.4, page 119; Mimura and Toda (1991), section 2.4, page 69
 ${ }^{18}$ May and Ponto (2012), lemma 1.4.2; Davis and Kirk (2001), theorem 6.57; Bott and Tu (1982), proposition 17.6.1 (for $X=S^{n}$)
 ${ }^{19}$ Each element of $\pi_{1}(Y)$ is represented by a closed path in Y. The action of $\pi_{1}(Y)$ on $[X, Y]_{0}$ transports Y 's basepoint around that closed path (Davis and Kirk (2001), definition 6.55 and the text above theorem 6.57).
 ${ }^{20}$ Arkowitz (2011), definition 5.5.7; Davis and Kirk (2001), definition 6.61
 ${ }^{21}$ Arkowitz (2011), text below definition 5.5.7; Davis and Kirk (2001), exercise 113

[^4]: ${ }^{22} \mathrm{~A}$ map $A \rightarrow B$ is called bijective if each element of B is the image of exactly one element of A.
 ${ }^{23}$ Matumoto et al (1984), theorem 2; May (2007), chapter 10, section 3; Arkowitz (2011), definition 2.4 .4 and proposition 2.4.6; Whitehead (1978), chapter 4, theorem 7.16 (recalled in Whitehead (1978), chapter 5, beginning of section 3)
 ${ }^{24} \mathrm{~A}$ map $A \rightarrow B$ is called surjective if each element of B is the image of one or more elements of A.
 ${ }^{25}$ May (2007), chapter 9 , section 6

[^5]: ${ }^{26}$ Davis and Kirk (2001), definition 7.30; Hatcher (2001), §4.1, p 352
 ${ }^{27}$ Maxim (2013), theorem 5.4.1; Mitchell (1997), theorem 6.4 and the text above it; May (2007), the beginnings of chapter 10 and of section 6 in chapter 9
 ${ }^{28}$ Davis and Kirk (2001), theorem 7.32; Hatcher (2001), proposition 4.22
 ${ }^{29}$ May (2007), chapter 10, section 3

[^6]: ${ }^{30}$ Kosinski (1993), chapter IV, corollary 5.8
 ${ }^{31}$ This is a special case of the construction described in the proof of theorem 1.10 in Hirsch (1976), chapter 5. That construction gives a map $M \rightarrow S^{n}$ of degree m for each $m \in \mathbb{Z}$. (Beware of what I assume is a typo in that source: " $i=1, \ldots, n$ " should presumably be " $i=1, \ldots, m$.")
 ${ }^{32} X \backslash Y$ denotes the part of X that remains after deleting Y.
 ${ }^{33}$ Hirsch (1976), chapter 5, text below theorem 1.6

[^7]: ${ }^{34}$ Hatcher (2001), chapter 0 , page 10
 ${ }^{35}$ This is not related to the wedge product $a \wedge b$ of vectors a and b (article 81674 .
 ${ }^{36}$ Arkowitz (2011), corollary 1.3.7
 ${ }^{37}$ Arkowitz (2011) writes $[X, Y]$ for the based homotopy set, which is denoted $[X, Y]_{0}$ here.

[^8]: ${ }^{38}$ Article 61813

[^9]: ${ }^{39}$ This is a special case of a result derived in https://mathoverflow.net/questions/234367/.
 ${ }^{40}$ Arkowitz (2011), proposition 3.2.4
 ${ }^{41}$ A sequence of maps is called exact if the image of each map equals the kernel of the next map (article 29682 . Exactness of the part of the sequence going in and out of $[X, M]$ is theorem 6.30 in Davis and Kirk (2001). Exactness of the part that goes in and out of $[X / A, M]$ follows from teh fact that the quotient map $X \rightarrow X / A$ is surjective, so if $X \rightarrow X / A \rightarrow M$ is nullhomotopic, then $X / A \rightarrow M$ is, too. This shows that the kernel of $[X / A, M] \rightarrow[X, M]$ consists of nullhomotopic maps, which is precisely the image of [point, $M] \rightarrow[X / A, M]$.
 ${ }^{42}$ Section 3

[^10]: ${ }^{43}$ Section 7 says $\left[T^{n}, S^{n}\right] \simeq \mathbb{Z}$, and article 92035 says $\pi_{3}(S U(3)) \simeq \mathbb{Z}$.
 ${ }^{44}$ In the composition $X \rightarrow Y \rightarrow Z$, the image of X is a loop that starts at $(-\pi, 0)$, travels through the disk to $(\pi, 0)$, which is equivalent to $(-\pi, 0)$, and then travels again from $(-\pi, 0)$ through the disk to $(\pi, 0)$. This map $X \rightarrow Z$ can be morphed to on that starts at $(-\pi, 0)$, travels through the disk to $(\pi \cos \epsilon, \pi \sin \epsilon)$, which is equivalent to $(-\pi \cos \epsilon,-\pi \sin \epsilon)$, and then travels from there through the disk to $(\pi, 0)$ so that the image of X is still a closed loop. By continuously morphing ϵ from 0 to π, we can morph the original map $X \rightarrow Z$ to a constant map.
 ${ }^{45}$ Articles 61813 and 92035

[^11]: ${ }^{46}$ Article 92035
 ${ }^{47}$ Section 7
 ${ }^{48}$ Davis and Kirk (2001), lemma 6.54
 ${ }^{49}$ Steenrod (1951), section 17.3
 ${ }^{50}$ Article 35490 shows that a fiber bundle with these ingredients exists.
 ${ }^{51}$ Mimura and Toda (1991), chapter 1, theorem 2.10 and page 68 (for the first relationship) article 61813 (for the second relationship)
 ${ }^{52}$ Section 12

[^12]: ${ }^{53}$ To confirm this, use $\pi_{4}\left(S^{3} \times S^{5}\right) \simeq \mathbb{Z}_{2}$ (article 61813) and $\pi_{4}(S U(3))=0$ (article 92035 .
 ${ }^{54}$ Article 92035
 ${ }^{55}$ Arkowitz (2011), corollary 1.3.7. That book uses the notation $[X, Y]$ for what this article calls $[X, Y]_{0}$, but based and unbased homotopy sets are the same when Y is 1-connected (article 61813).
 ${ }^{56}$ This relationship is also used in the proof of equation (7) in Wang (2021a).
 ${ }^{57}$ Section 7
 ${ }^{58} \pi_{j}\left(S^{3} \times S^{5}\right)$ and $\pi_{j}(S U(3))$ are both trivial for $j \in\{1,2\}$, and $\pi_{j}(S U(3))$ is trivial for $j=4$.
 ${ }^{59} \pi_{3}\left(S^{3} \times S^{5}\right)$ and $\pi_{3}(S U(3))$ are both isomorphic to \mathbb{Z}, and a homomorphism $\mathbb{Z} \rightarrow \mathbb{Z}$ may or may not be bijective.

[^13]: ${ }^{60}$ Section 12
 ${ }^{61}$ This follows from the fact that $\pi_{4}(S U(2)) \simeq \pi_{4}\left(S^{3}\right) \simeq \mathbb{Z}_{2}$ has exactly two elements.
 ${ }^{62}$ A third S^{3} bundle over S^{5} exists (Steenrod (1951), section 26.9; Wang (2021a)), but it's not a principal bundle. It's a nontrivial fiber bundle that admits a section (Wang (2021b), theorem 1.1).
 ${ }^{63}$ The identity $\pi_{j}\left(S^{j}\right) \simeq \mathbb{Z}$ implies that such a map exists (section 7).
 ${ }^{64}$ Lafont and Neofytidis (2019), in the proof of lemma 4.2
 ${ }^{65}$ Article 35490 defines pullback bundle.
 ${ }^{66}$ Hatcher (2001), section 3.H, pages 332-333; Whitehead (1978), chapter 1, text above corollary 7.22
 ${ }^{67}$ Whitehead (1978), chapter 5, top of page 254

[^14]: ${ }^{68}$ Article 28539 includes a preview of cohomology groups.
 ${ }^{69}$ Cohen (2023), definition 4.4; Davis and Kirk (2001), definition 7.19
 ${ }^{70}$ Davis and Kirk (2001), theorem 7.20; Hatcher (2001), section 4.2, page 365; Cohen (2023), theorem 7.19 and the text above theorem 7.23
 ${ }^{71}$ Similarly, for each abelian group G and each integer $n \geq 2$, a 1-connected CW complex X exists whose homology groups $H_{k}(X ; \mathbb{Z})$ are G for $k=n$ and zero otherwise (Arkowitz (2011), lemma 2.5.2 and definition 2.5.3). Such an X is called a Moore space, denoted $M(G, n)$.
 ${ }^{72}$ Hatcher (2001), proposition 4.30
 ${ }^{73}$ Arkowitz (2011), text above definition 2.5.10
 ${ }^{74}$ Davis and Kirk (2001), theorem 7.22, previewed on page 168; Arkowitz (2011), end of section 2.1, definition 2.5.10, remark 2.5.11, and beginning of section 5.1
 ${ }^{75}$ This is also true using a based homotopy set $[X, K(G, n)]_{0}$ in place of the free homotopy set $[X, K(G, n)]$ (Hatcher (2001), theorem 4.57 and section 4.3, page 394).
 ${ }^{76}$ Husemöller et al (2008), chapter 9, theorem 6.3

[^15]: ${ }^{77}$ Article 61813
 ${ }^{78}$ Usually, a $K(G, n)$ is not a finite-dimensional manifold.

