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Homotopy Sets
Randy S

Abstract If X and Y are topological spaces and f is a map from X to Y ,
then the homotopy class [f ] is the set of all maps from X to Y that are
homotopic to f , which roughly means they can be continuously morphed to
f . The (free) homotopy set [X, Y ] is the set whose elements are homotopy
classes of maps from X to Y . The based homotopy set is defined similarly,
but using only homotopies that preserve a designated basepoint in X and in
Y . The study of homotopy sets is a prominent part of the study of topology.
Homotopy groups (article 61813) and cohomology groups (article 28539)
may both be expressed as special families of homotopy sets equipped with a
natural group structure. This article gathers some results about homotopy
sets, with special attention given to the example [T 3, SU(k)] where T 3 is a
3-torus and SU(k) is a special unitary group.
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1 Conventions and notation

• Map means continuous map, and function means continuous function.

• Each topological space is assumed to be homeomorphic to a CW complex.1,2

• Sn is an n-dimensional sphere, also called an n-sphere.

• T n is an n-dimensional torus (the cartesian product of n circles), also called
an n-torus.

• Z is the integers, Zk is the integers modulo k, and R is the real numbers.

• Section 2 will introduce [X, Y ], the set of free homotopy classes of maps from
one topological space X to another topological space Y .

• Section 3 will introduce [X, Y ]0, the set of based homotopy classes of maps.

• πj(X) is the jth homotopy group of a topological space X.3

• A topological space X is called n-connected if πj(X) is trivial for all j ≤ n.3

In particular, 1-connected means π0(X) and π1(X) are both trivial. The
word connected by itself is an abbreviation for 0-connected.

• Hj(X;Z) is the jth integer cohomology group of a topological space X.4

• U(k) and SU(k) are the unitary and special unitary groups.

• A group or homotopy set is called trivial if it has only one element.

• If G and H are groups, then G ' H means G and H are isomorphic to each
other. If X and Y are topological spaces, then X ' Y means X and Y are
homeomorphic to each other.

1Article 93875 defines CW complex.
2Every smooth manifold is homeomorphic to a CW complex (article 93875).
3Article 61813
4Article 28539
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2 Free homotopy sets

Article 61813 introduces the concept of homotopy. Intuitively, a homotopy from
one map f : X → Y to another map g : X → Y is a continuous deformation from
f(X) to g(X) within Y . If a homotopy exists between f and g, then f and g are
said to be homotopic to each other. For any given f : X → Y , the set [f ] of all
maps homotopic to f is called a homotopy class. A map f : X → Y is called
nullhomotopic if it’s homotopic to a constant map, which is a map that sends
all of X to a single point of Y .

When X and Y are topological spaces, [X, Y ] denotes the set of homotopy
classes of maps from X to Y . Each element of [X, Y ] is a homotopy class [f ] of
maps f : X → Y . Section 1 in Čadek et al (2014) says,

A central theme in algebraic topology is to understand, for given topo-
logical spaces X and Y , the set [X, Y ] of homotopy classes of maps
from X to Y . Many of the celebrated results throughout the history of
topology can be cast as information about [X, Y ] for particular spaces
X and Y .

This article is motivated by applications to the study of principal G-bundles,5 which
are important in quantum field theory with gauge invariance.

5Article 33600
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3 Based homotopy sets

If we choose a point x0 ∈ X and a point y0 ∈ Y , then a homotopy that preserves
the relationship x0 → y0 throughout the deformation process is called a based
homotopy. The points x0, y0 are called basepoints. Each element of the based
(or pointed) homotopy set [X, Y ]0 is an equivalence class [f ]0 of maps using
based homotopy as the equivalence relation. If Y is connected, then the homotopy
group πn(Y ) may be defined as the set [Sn, Y ]0 equipped with an appropriate group
operation:6

πn(Y ) = [Sn, Y ]0. (1)

The set [X, Y ] is sometimes called a free homotopy set7 to distinguish it from
the based homotopy set [X, Y ]0. The class [f ]0 is a subset of the class [f ], because
[f ] includes all maps that are homotopic to f , whether or not they respect the
basepoints.8

The notation [X, Y ]0 is common,9,10 but sources that don’t use free homotopy
sets often use [X, Y ] to denote the based homotopy set.11,12

6Whitehead (1978), section III.5, text above corollary 5.23; May (2007), section 9.1
7Matumoto et al (1984), section 1
8Article 61813 describes an example where [f ]0 and [f ] differ, and https://math.stackexchange.com/

questions/2118574/ describes another one.
9Davis and Kirk (2001), section 6.9; Mimura and Toda (1991), section 4.1

10Hatcher (2001) writes 〈X,Y 〉 instead of [X,Y ]0 (text above proposition 4.22).
11May (2007), section 8.1; May and Ponto (2012), beginning of section 1.4; Arkowitz (2011), page viii
12The beginning of section 7.1 in Cohen (2023) says, “In this chapter, unless otherwise specified, we will assume

that all spaces are connected and come equipped with a basepoint. When we write [X,Y ] we mean homotopy classes
of basepoint preserving maps X → Y .”
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4 When free and based homotopy sets are equal

Suppose that X and Y are both connected CW complexes.13 The free homotopy
set [X, Y ] and the based homotopy set [X, Y ]0 are not always equal to each other,
but they are in these cases, among others:

• If Y is 1-connected,14 then [X, Y ] = [X, Y ]0.
15

• If Y is a connected H-space, then [X, Y ] = [X, Y ]0.
16 Every topological

group (which includes every Lie group) is an H-space.17

If X and Y are connected, then [X, Y ] is equal to [X, Y ]0 modulo an appropriate
action of π1(Y ),18,19 so they’re equal to each other whenever that action is trivial.

A space Y is called n-simple if the action of π1(Y ) on πn(Y ) is trivial.20 A
space Y is 1-simple if and only if π1(Y ) is abelian.21 Using equation (1), that result
may also be expressed this way:

• If π1(Y ) is abelian, then [S1, Y ] = [S1, Y ]0.

13The sources cited in footnotes 15 and 16 assume that the spaces are compactly generated. Every CW complex
has that property (article 93875). They also assume that the basepoints are nondegenerate (Davis and Kirk (2001),
definition 6.31; May and Ponto (2012), beginning of section 1.1). Again, every CW complex has that property
(Frankland (2013), example 1.2).

14Section 1 defines 1-connected.
15Davis and Kirk (2001), corollary 6.59
16May and Ponto (2012), proposition 1.4.3 (and comment 0.0.3 on page xxii for the connected premise)
17Whitehead (1978), section III.4, page 119; Mimura and Toda (1991), section 2.4, page 69
18May and Ponto (2012), lemma 1.4.2; Davis and Kirk (2001), theorem 6.57; Bott and Tu (1982), proposition

17.6.1 (for X = Sn)
19Each element of π1(Y ) is represented by a closed path in Y . The action of π1(Y ) on [X,Y ]0 transports Y ’s

basepoint around that closed path (Davis and Kirk (2001), definition 6.55 and the text above theorem 6.57).
20Arkowitz (2011), definition 5.5.7; Davis and Kirk (2001), definition 6.61
21Arkowitz (2011), text below definition 5.5.7; Davis and Kirk (2001), exercise 113
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5 n-equivalence

Consider two CW complexes X and Y . Any map f : X → Y induces maps

f∗ : [A,X]0 → [A, Y ]0 (2)

for all A, because each map A→ X may be composed with f to get a map A→ Y .
For the same reason, f : X → Y induces maps

f∗ : πj(X, x)→ πj(Y, f(x)) (3)

of homotopy groups with the indicated basepoints. The induced maps (2)-(3) are
not always bijective,22 but if A is a CW complex and n is any positive integer,
these two conditions are equivalent to each other:23

• the map (2) is bijective when dimA < n and surjective when dimA = n,

• the map (3) is bijective when j < n and surjective24 when j = n. In other
words, f is an n-equivalence.25

For most maps X → Y , neither of these conditions holds, but if either one of them
does hold, then so does the other one.

22A map A→ B is called bijective if each element of B is the image of exactly one element of A.
23Matumoto et al (1984), theorem 2; May (2007), chapter 10, section 3; Arkowitz (2011), definition 2.4.4 and

proposition 2.4.6; Whitehead (1978), chapter 4, theorem 7.16 (recalled in Whitehead (1978), chapter 5, beginning of
section 3)

24A map A→ B is called surjective if each element of B is the image of one or more elements of A.
25May (2007), chapter 9, section 6
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6 n-equivalence for large n

If the induced maps (3) are isomorphisms for all j, then f is called a weak ho-
motopy equivalence.26 If X and Y are CW complexes, then a weak homotopy
equivalence is a homotopy equivalence,27 so in this case the induced map (2) is
bijective for all CW complexes A.28

A similar result is true for finite n if X and Y are both CW complexes with di-
mension less than n: in this case, an n-equivalence between X and Y is a homotopy
equivalence,29 which again implies that (2) is bijective for all A.

26Davis and Kirk (2001), definition 7.30; Hatcher (2001), §4.1, p 352
27Maxim (2013), theorem 5.4.1; Mitchell (1997), theorem 6.4 and the text above it; May (2007), the beginnings of

chapter 10 and of section 6 in chapter 9
28Davis and Kirk (2001), theorem 7.32; Hatcher (2001), proposition 4.22
29May (2007), chapter 10, section 3
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7 [M,Sn] when M is n-dimensional

If M is a closed, compact, connected, and oriented n-dimensional manifold, then
[M,Sn] ' Z, where the integer assigned to a map M → Sn is called the degree of
the map.30 When M = Sn, this may also be written πn(S

n) ' Z.
To construct an example of a map M → Sn that is nullhomotopic, choose any

n-dimensional ball U in M , and choose any point p in Sn. A map f : M → Sn

with f : U → Sn \ p bijective and f(M \ U) = p is not nullhomotopic.31,32

A map X → Y is called surjective if every element of Y is the image of at least
one element of X. A map M → Sn with nonzero degree is surjective,33 but it’s
not a covering map in the sense defined in article 61813. A covering map X → Y
assigns k points of X to each point of Y , with the same k everywhere. Any covering
map from a sphere Sn to itself necessarily has |k| = 1. A generic continuous map
Sn → Sn may have any degree, but such a map cannot be k-to-1 with the same
k everywhere. To construct an example of a map Sn → Sn with degree 2, think
of Sn as the set of points (x0, x1, ..., xn) ∈ Rn+1 with

∑
j x

2
j = 1. Write x0 = cos θ

and xj = x̂j sin θ for j ∈ {1, ..., n} with
∑

j x̂
2
j = 1 and 0 ≤ θ ≤ π. Then the map

Sn → Sn defined by (θ, x̂j) → (2θ, x̂j) has degree 2. This map is 2-to-1 almost
everywhere, but not where θ is an integer multiple of π/2, because it sends the
whole equator (x0 = 0) of the first Sn to a single point (x0 = −1) of the second Sn.

30Kosinski (1993), chapter IV, corollary 5.8
31This is a special case of the construction described in the proof of theorem 1.10 in Hirsch (1976), chapter 5. That

construction gives a map M → Sn of degree m for each m ∈ Z. (Beware of what I assume is a typo in that source:
“i = 1, ..., n” should presumably be “i = 1, ...,m.”)

32X \ Y denotes the part of X that remains after deleting Y .
33Hirsch (1976), chapter 5, text below theorem 1.6
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8 The wedge sum and the smash product

An n-torus, denoted T n, is a cartesian product of n circles. In particular, T 2 =
S1 × S1. Section 10 will determine [T 2,M ] when M is 1-connected. This section
introduces some of the ingredients in that calculation.

Consider two topological spaces X and Y with designated basepoints x0 ∈ X
and y0 ∈ Y . Their wedge sum, denoted X ∨ Y , is the subset of their cartesian
product X × Y defined by the union of X × y0 and x0 × Y .34,35 Given two maps
f : X → M and g : Y → M , a map {f, g} : X ∨ Y → M can be defined for which
the induced map

[X,M ]0 × [Y,M ]0 → [X ∨ Y,M ]0 (4)

given by ([f ], [g]) 7→ [{f, g}] is bijective.36,37

The smash product of two spaces X and Y , denoted X ∧ Y , is defined by
starting with X×Y and then collapsing a wedge X∨Y ⊂ X×Y to a single point:34

X ∧ Y ≡ X × Y
X ∨ Y

.

Section 9 will use easy examples to illustrate these things.

34Hatcher (2001), chapter 0, page 10
35This is not related to the wedge product a ∧ b of vectors a and b (article 81674).
36Arkowitz (2011), corollary 1.3.7
37Arkowitz (2011) writes [X,Y ] for the based homotopy set, which is denoted [X,Y ]0 here.
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9 Examples

The wedge sum S1∨S1 is a pair of circles that intersect each other at a single point,
so it has the same topology as the symbol ∞. The two-dimensional real projective
space RP2 has fundamental group38

[S1,RP2]0 = π1(RP2) = Z2.

Use this in the bijection (4) to get

[S1 ∨ S1,RP2]0 ' Z2 × Z2,

which shows the number of classes of based homotopies from S1 ∨ S1 to RP2 is
four.

The space S1∨S1 is not a manifold, because the point where the circles intersect
does not have an open neighborhood homeomorphic to any euclidean space, but
it is a CW complex: it is made from two 1-cells whose endpoints meet at a single
0-cell.

The torus T 2 may also be given the structure of a CW complex in which S1∨S1

is a subcomplex: it is made from a subset of the cells from which T 2 is made. To
deduce this, think of the torus T 2 = S1 × S1 as a rectangle with opposite sides
identified. Let U denote the interior of this rectangle. This is a 2-cell. The
remainder T 2 \ U is the boundary of the rectangle, and identifying opposite sides
makes it a wedge sum of two circles: T 2 \U ' S1 ∨ S1. Altogether, this represents
the torus as the union of a 2-cell U and a 1-dimensional subcomplex S1 ∨ S1.

The smash product of two circles is a 2-sphere. We can deduce this by using
the representation in the preceding paragraph. The smash product S1 ∧ S1 =
T 2/(S1 ∨ S1) is defined by treating the rectangle’s boundary S1 ∨ S1 as a single
point. The rectangle’s interior is homeomorphic to the interior of a disk, so S1∧S1

is topologically the same as treating a disk’s boundary as a single point. This gives
a sphere S2.

38Article 61813
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10 [T 2,M ] when M is 1-connected

This section shows that if a CW complex M is 1-connected, then the set π2(M) is
the same as [T 2,M ].39

If a CW complex A is a subcomplex of a CW complex X, then the inclusion
A→ X qualifies as something called a cofibration.40 If an inclusion A→ X is a
cofibration, then this sequence is exact:41

[point,M ]→ [X/A,M ]→ [X,M ]→ [A,M ],

where the second map is the pullback of the projection X → X/A and the third
one is the pullback of the inclusion A→ X. Applying this to the case described in
section 9 gives an exact sequence

(one-element set)→ [S2,M ]→ [T 2,M ]→ [S1 ∨ S1,M ]. (5)

Now suppose that M is 1-connected. In this case, the based homotopy set [X,M ]0
is the same as the free homotopy set [X,M ], and the homotopy groups πj(M)
are the same (as sets) as the free homotopy sets [Sj,M ].42 Use these facts in (5),
together with the bijection (4) to get an exact sequence

(one-element set)→ π2(M)→ [T 2,M ]→ (one-element set). (6)

The exactness of (6) implies that the set π2(M) is the same as [T 2,M ], as claimed
at the beginning of this section.

39This is a special case of a result derived in https://mathoverflow.net/questions/234367/.
40Arkowitz (2011), proposition 3.2.4
41A sequence of maps is called exact if the image of each map equals the kernel of the next map (article 29682).

Exactness of the part of the sequence going in and out of [X,M ] is theorem 6.30 in Davis and Kirk (2001). Exactness
of the part that goes in and out of [X/A,M ] follows from teh fact that the quotient map X → X/A is surjective,
so if X → X/A → M is nullhomotopic, then X/A → M is, too. This shows that the kernel of [X/A,M ] → [X,M ]
consists of nullhomotopic maps, which is precisely the image of [point,M ]→ [X/A,M ].

42Section 3
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11 A warning about concatenated homotopies

Sections 12-12 will show that [T 3, SU(k)] is nontrivial for k ≥ 2. The hardest step
is showing that [T 3, SU(3)] is nontrivial. We might be tempted to show this using
maps of the form T 3 → S3 → SU(3), because we know that [T 3, S3] and [S3, SU(3)]
are both nontrivial.43 This doesn’t automatically imply that [T 3, SU(3)] is also
nontrivial, though, because a map X → Z of the form X → Y → Z may be
homotopic to a constant map even if the constituent maps X → Y and Y → Z are
not. This section describes examples of that phenomenon.

For one example, use X = Y = S1 and Z = RP2. Represent S1 as the unit
circle in the complex plane, and take the map X → Y to be the double-covering
defined by eiθ 7→ ei 2θ. To describe the map Y → Z, use a pair of coordinates
(a, b) to denote points of R2, and think of RP2 as a disk in R2 of radius π with
opposite points of its boundary identified with each other. Define a map Y → Z
by eiθ 7→ (θ, 0) for −π < θ ≤ π. Then the maps X → Y and Y → Z are both
homotopically nontrivial (neither one can be continuously morphed to a constant
map), but their composition can be continuously morphed to a constant map.44

The same phenomenon occurs with Z = RP3 in place of Z = RP2, which shows
that it can occur even when X, Y, Z are all orientable manifolds.

The phenomenon can still occur if X, Y, Z are all 1-connected orientable mani-
folds. In particular, it occurs when X = S4, Y = S3, and Z = SU(3). In this case,
all compositions X → Y → Z are homotopically trivial because π4(SU(3)) = 0,
even though both individual maps in the composition may be homotopically non-
trivial because π4(S

3) = Z2 and π3(SU(3)) = Z.45

43Section 7 says [Tn, Sn] ' Z, and article 92035 says π3(SU(3)) ' Z.
44In the composition X → Y → Z, the image of X is a loop that starts at (−π, 0), travels through the disk

to (π, 0), which is equivalent to (−π, 0), and then travels again from (−π, 0) through the disk to (π, 0). This map
X → Z can be morphed to on that starts at (−π, 0), travels through the disk to (π cos ε, π sin ε), which is equivalent
to (−π cos ε,−π sin ε), and then travels from there through the disk to (π, 0) so that the image of X is still a closed
loop. By continuously morphing ε from 0 to π, we can morph the original map X → Z to a constant map.

45Articles 61813 and 92035
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12 Nontriviality of [T 3, SU(k)]

The fact that [T 3, SU(2)] is nontrivial follows from the homeomorphism46 SU(2) '
S3 combined with the fact that [M,S3] ' Z for any closed 3-dimensional manifold
M .47

To show that [T 3, SU(k)] is nontrivial for all k ≥ 2, we can use another result
that relates the case k to the case k + 1. If E → B is a fiber bundle with fiber F ,
then this sequence of induced maps between homotopy groups is exact:48

· · · → πj+1(B)→ πj(F )→ πj(E)→ πj(B)→ · · · → π1(B). (7)

This is called the homotopy sequence of the bundle.49 Set50

F = SU(k) E = SU(k + 1) B = SU(k + 1)/SU(k)

and use the relationships51

SU(k + 1)/SU(k) ' S2k+1 for k ≥ 2 πj(S
2k+1) = 0 for j ≤ 2k

to conclude that πj(F ) → πj(E) is bijective for j < 2k and surjective for j = 2k,
and then use section 5 to conclude that [T n, SU(k)] and [T n, SU(k + 1)] have the
same number of elements if n < 2k. Set n = 3 and k = 2 to deduce that [T 3, SU(2)]
and [T 3, SU(3)] have the same number of elements, which implies that [T 3, SU(4)]
also has the same number of elements, and so on. We already know that [T 3, SU(2)]
is nontrivial,52 so this shows that [T 3, SU(k)] is nontrivial for every k ≥ 2.

46Article 92035
47Section 7
48Davis and Kirk (2001), lemma 6.54
49Steenrod (1951), section 17.3
50Article 35490 shows that a fiber bundle with these ingredients exists.
51Mimura and Toda (1991), chapter 1, theorem 2.10 and page 68 (for the first relationship) article 61813 (for the

second relationship)
52Section 12

14



cphysics.org article 69958 2024-05-19

13 Nontriviality of [T 3, SU(3)]: cross-check

As a cross-check, this section uses a different method to rederive the fact that
[T 3, SU(3)] is nontrivial.

The Lie group SU(3) and the product S3×S5 are both 8-dimensional manifolds.
They are not homeomorphic to each other,53 but they do have the same homology
groups,54 so they are more similar to each other than the number of dimensions
alone would suggest. This section shows that [T 3, S3 × S5] is nontrivial and then
uses that result to deduce that [T 3, SU(3)] must also be nontrivial.

To show that [T 3, S3 × S5] is nontrivial, use the general relationship55,56

[X,A×B] ' [X,A]× [X,B]. (8)

Using the relationship57

[T 3, S3] ' Z
in (8) shows that [T 3, S3 × S5] has at least as many elements as Z.

The next goal is to relate [T 3, S3 × S5] to [T 3, SU(3)]. This will be done by
establishing the existence of a map f : S3 × S5 → SU(3) for which the induced
homomorphisms πj(S

3×S5)→ πj(SU(3)) are bijective for j ≤ 3 and surjective for
j = 4. This is automatic for j ∈ {1, 2, 4},58 but the case j = 3 depends on the map
f .59 If such a map does exist, then the lemma reviewed in section 5 implies that
the induced map [T 3, S3 × S5]→ [T 3, SU(3)] is bijective, and combining this with
the previous paragraph shows that [T 3, SU(3)] is nontrivial.

The remaining task is to establish the existence of a map f : S3×S5 → SU(3) for
which the induced homomorphism π3(S

3×S5)→ π3(SU(3)) is bijective. The man-

53To confirm this, use π4(S3 × S5) ' Z2 (article 61813) and π4(SU(3)) = 0 (article 92035).
54Article 92035
55Arkowitz (2011), corollary 1.3.7. That book uses the notation [X,Y ] for what this article calls [X,Y ]0, but based

and unbased homotopy sets are the same when Y is 1-connected (article 61813).
56This relationship is also used in the proof of equation (7) in Wang (2021a).
57Section 7
58πj(S

3 × S5) and πj(SU(3)) are both trivial for j ∈ {1, 2}, and πj(SU(3)) is trivial for j = 4.
59π3(S3×S5) and π3(SU(3)) are both isomorphic to Z, and a homomorphism Z→ Z may or may not be bijective.
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ifolds SU(2) and S3 are homeomorphic to each other,60 so we can think of S3× S5

as the total space of a (trivial) principal SU(2)-bundle over S5. The quotient man-
ifold SU(3)/SU(2) is homeomorphic to S5,60 so we can also think of SU(3) as the
total space of a (nontrivial) principal SU(2)-bundle over S5. Up to isomorphism,
these are the only two principal SU(2)-bundles over S5.61,62 To construct a map f
with the desired property, start with the nontrivial bundle SU(3) → S5, choose a
map g : S5 → S5 of degree 2,63 and consider the pullback of the nontrivial bundle
by this map.64,65 Principal SU(2)-bundles over S5 are classified by π4(SU(2)) ' Z2,
so the fact that g has degree 2 implies that the resulting bundle must be the triv-
ial bundle with total space S3 × S5. This relationship between the two bundles
provides a map f : S3 × S5 → SU(3) from one total space to the other.66

To show that this map f induces a bijection π3(S
3 × S5) → π3(SU(3)), use

this general property of pullback bundles: if the original bundle is E → B and the
map f : B′ → B gives the pullback bundle E ′ → B′, then this induced sequence of
homotopy groups is exact:67

· · · → πj+1(B)→ πj(E
′)→ πj(E)⊕ πj(B′)→ πj(B)→ · · · .

Set B = B′ = S5, E ′ = S3 × S5, and E = SU(3) and use πj(S
5) = 0 for j ≤ 4 to

infer πj(E
′) ' πj(E) for j ≤ 3. This shows that f has the desired property, which

is the last ingredient we needed to complete the proof that [T 3, SU(3)] is nontrivial.

60Section 12
61This follows from the fact that π4(SU(2)) ' π4(S3) ' Z2 has exactly two elements.
62A third S3 bundle over S5 exists (Steenrod (1951), section 26.9; Wang (2021a)), but it’s not a principal bundle.

It’s a nontrivial fiber bundle that admits a section (Wang (2021b), theorem 1.1).
63The identity πj(S

j) ' Z implies that such a map exists (section 7).
64Lafont and Neofytidis (2019), in the proof of lemma 4.2
65Article 35490 defines pullback bundle.
66Hatcher (2001), section 3.H, pages 332-333; Whitehead (1978), chapter 1, text above corollary 7.22
67Whitehead (1978), chapter 5, top of page 254
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14 Homotopy sets and cohomology

Section 3 reviewed how homotopy groups may be expressed in terms of homotopy
sets. This section reviews how cohomology groups may be expressed in terms of
homotopy sets.68

Choose a group G and a positive integer n. A topological space X with the
property

πk(X) =

{
G if k = n,

0 otherwise

is called an Eilenberg-MacLane space,69 denoted K(G, n). A CW complex
satisfying this condition exists for each group G if n = 1 and for each abelian group
if n ≥ 2.70,71 It is determined uniquely by G and n up to homotopy equivalence.72

When G is abelian, Eilenberg-MacLane spaces are important because of their
relationship to cohomology groups. The homotopy set [X,K(G, n)] can be given
the structure of an abelian group in a natural way.73 If X is a CW complex, G
is an abelian group, and K(G, n) is an Eilenberg-MacLane space, then the group
[X,K(G, n)] and the cohomology group Hn(X;G) are isomorphic to each other:74,75

[X,K(G, n)] ' Hn(X;G). (9)

The isomorphism is called the Eilenberg-MacLane map.76

68Article 28539 includes a preview of cohomology groups.
69Cohen (2023), definition 4.4; Davis and Kirk (2001), definition 7.19
70Davis and Kirk (2001), theorem 7.20; Hatcher (2001), section 4.2, page 365; Cohen (2023), theorem 7.19 and the

text above theorem 7.23
71Similarly, for each abelian group G and each integer n ≥ 2, a 1-connected CW complex X exists whose homology

groups Hk(X;Z) are G for k = n and zero otherwise (Arkowitz (2011), lemma 2.5.2 and definition 2.5.3). Such an
X is called a Moore space, denoted M(G,n).

72Hatcher (2001), proposition 4.30
73Arkowitz (2011), text above definition 2.5.10
74Davis and Kirk (2001), theorem 7.22, previewed on page 168; Arkowitz (2011), end of section 2.1, definition

2.5.10, remark 2.5.11, and beginning of section 5.1
75This is also true using a based homotopy set [X,K(G,n)]0 in place of the free homotopy set [X,K(G,n)] (Hatcher

(2001), theorem 4.57 and section 4.3, page 394).
76Husemöller et al (2008), chapter 9, theorem 6.3
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15 Example

The circle S1 is a K(Z, 1).77,78 Use this in equation (9) to get

[M,U(1)] ' [M,S1] ' [M,K(Z, 1)] ' H1(M ;Z).

This says that homotopy classes of maps M → U(1) correspond one-to-one with
elements of the first cohomology group H1(M ;Z).

77Article 61813
78Usually, a K(G,n) is not a finite-dimensional manifold.
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