Homotopy Sets

Randy S

Abstract If X and Y are topological spaces and f is a map from X to Y, then the homotopy class [f] is the set of all maps from X to Y that are homotopic to f, which roughly means they can be continuously morphed to f. The (free) homotopy set [X, Y] is the set whose elements are homotopy classes of maps from X to Y. The based homotopy set is defined similarly, but using only homotopies that preserve a designated basepoint in X and in Y. The study of homotopy sets is a prominent part of the study of topology. Homotopy groups (article 61813) and cohomology groups (article 28539) may both be expressed as special families of homotopy sets equipped with a natural group structure. This article gathers some results about homotopy sets, with special attention given to the example $[T^3, SU(k)]$ where T^3 is a 3-torus and SU(k) is a special unitary group.

Contents

1	Conventions and notation	3
2	Free homotopy sets	4
3	Based homotopy sets	5
4	When free and based homotopy sets are equal	6
5	<i>n</i> -equivalence	7
(C)	2018-2024 Randy S	1

For the latest version and the revision history, visit cphysics.org/article/69958

cphysics.org	article 69958	2024-05-19
6 <i>n</i> -equivalence for	large n	8
7 $[M, S^n]$ when M is	n-dimensional	9
8 The wedge sum a	nd the smash product	10
9 Examples		11
10 $[T^2, M]$ when M is	1-connected	12
11 A warning about	concatenated homotopies	13
12 Nontriviality of [7	$[T^3, SU(k)]$	14
13 Nontriviality of [7	$[T^3, SU(3)]$: cross-check	15
14 Homotopy sets an	nd cohomology	17
15 Example		18
16 References		19
17 References in this	series	21

1 Conventions and notation

- *Map* means continuous map, and *function* means continuous function.
- Each topological space is assumed to be homeomorphic to a CW complex.^{1,2}
- S^n is an *n*-dimensional sphere, also called an *n*-sphere.
- T^n is an *n*-dimensional torus (the cartesian product of *n* circles), also called an *n*-torus.
- \mathbb{Z} is the integers, \mathbb{Z}_k is the integers modulo k, and \mathbb{R} is the real numbers.
- Section 2 will introduce [X, Y], the set of free homotopy classes of maps from one topological space X to another topological space Y.
- Section 3 will introduce $[X, Y]_0$, the set of based homotopy classes of maps.
- $\pi_j(X)$ is the *j*th homotopy group of a topological space X^3 .
- A topological space X is called *n*-connected if $\pi_j(X)$ is trivial for all $j \leq n$.³ In particular, **1-connected** means $\pi_0(X)$ and $\pi_1(X)$ are both trivial. The word **connected** by itself is an abbreviation for 0-connected.
- $H^{j}(X;\mathbb{Z})$ is the *j*th integer cohomology group of a topological space X.⁴
- U(k) and SU(k) are the unitary and special unitary groups.
- A group or homotopy set is called **trivial** if it has only one element.
- If G and H are groups, then $G \simeq H$ means G and H are isomorphic to each other. If X and Y are topological spaces, then $X \simeq Y$ means X and Y are homeomorphic to each other.

¹Article 93875 defines **CW complex**.

 $^{^2\}mathrm{Every}$ smooth manifold is homeomorphic to a CW complex (article 93875).

³Article 61813

 $^{^{4}}$ Article 28539

article 69958

2 Free homotopy sets

Article 61813 introduces the concept of **homotopy**. Intuitively, a homotopy from one map $f: X \to Y$ to another map $g: X \to Y$ is a continuous deformation from f(X) to g(X) within Y. If a homotopy exists between f and g, then f and g are said to be **homotopic** to each other. For any given $f: X \to Y$, the set [f] of all maps homotopic to f is called a **homotopy class**. A map $f: X \to Y$ is called **nullhomotopic** if it's homotopic to a **constant map**, which is a map that sends all of X to a single point of Y.

When X and Y are topological spaces, [X, Y] denotes the set of homotopy classes of maps from X to Y. Each element of [X, Y] is a homotopy class [f] of maps $f: X \to Y$. Section 1 in Čadek *et al* (2014) says,

A central theme in algebraic topology is to understand, for given topological spaces X and Y, the set [X, Y] of homotopy classes of maps from X to Y. Many of the celebrated results throughout the history of topology can be cast as information about [X, Y] for particular spaces X and Y.

This article is motivated by applications to the study of principal G-bundles,⁵ which are important in quantum field theory with gauge invariance.

 $^{^{5}}$ Article 33600

3 Based homotopy sets

If we choose a point $x_0 \in X$ and a point $y_0 \in Y$, then a homotopy that preserves the relationship $x_0 \to y_0$ throughout the deformation process is called a **based homotopy**. The points x_0, y_0 are called **basepoints**. Each element of the **based** (or **pointed**) **homotopy set** $[X, Y]_0$ is an equivalence class $[f]_0$ of maps using based homotopy as the equivalence relation. If Y is connected, then the homotopy group $\pi_n(Y)$ may be defined as the set $[S^n, Y]_0$ equipped with an appropriate group operation:⁶

$$\pi_n(Y) = [S^n, Y]_0.$$
(1)

The set [X, Y] is sometimes called a **free homotopy set**⁷ to distinguish it from the based homotopy set $[X, Y]_0$. The class $[f]_0$ is a subset of the class [f], because [f] includes all maps that are homotopic to f, whether or not they respect the basepoints.⁸

The notation $[X, Y]_0$ is common,^{9,10} but sources that don't use free homotopy sets often use [X, Y] to denote the based homotopy set.^{11,12}

⁶Whitehead (1978), section III.5, text above corollary 5.23; May (2007), section 9.1

⁷Matumoto *et al* (1984), section 1

⁸Article 61813 describes an example where $[f]_0$ and [f] differ, and https://math.stackexchange.com/ questions/2118574/ describes another one.

⁹Davis and Kirk (2001), section 6.9; Mimura and Toda (1991), section 4.1

¹⁰Hatcher (2001) writes $\langle X, Y \rangle$ instead of $[X, Y]_0$ (text above proposition 4.22).

¹¹May (2007), section 8.1; May and Ponto (2012), beginning of section 1.4; Arkowitz (2011), page viii

¹²The beginning of section 7.1 in Cohen (2023) says, "In this chapter, unless otherwise specified, we will assume that all spaces are connected and come equipped with a basepoint. When we write [X, Y] we mean homotopy classes of basepoint preserving maps $X \to Y$."

4 When free and based homotopy sets are equal

Suppose that X and Y are both connected CW complexes.¹³ The free homotopy set [X, Y] and the based homotopy set $[X, Y]_0$ are not always equal to each other, but they are in these cases, among others:

- If Y is 1-connected,¹⁴ then $[X, Y] = [X, Y]_0$.¹⁵
- If Y is a connected **H-space**, then $[X, Y] = [X, Y]_0$.¹⁶ Every topological group (which includes every Lie group) is an H-space.¹⁷

If X and Y are connected, then [X, Y] is equal to $[X, Y]_0$ modulo an appropriate action of $\pi_1(Y)$,^{18,19} so they're equal to each other whenever that action is trivial.

A space Y is called *n***-simple** if the action of $\pi_1(Y)$ on $\pi_n(Y)$ is trivial.²⁰ A space Y is 1-simple if and only if $\pi_1(Y)$ is abelian.²¹ Using equation (1), that result may also be expressed this way:

• If $\pi_1(Y)$ is abelian, then $[S^1, Y] = [S^1, Y]_0$.

¹³The sources cited in footnotes 15 and 16 assume that the spaces are *compactly generated*. Every CW complex has that property (article 93875). They also assume that the basepoints are *nondegenerate* (Davis and Kirk (2001), definition 6.31; May and Ponto (2012), beginning of section 1.1). Again, every CW complex has that property (Frankland (2013), example 1.2).

 $^{^{14}}$ Section 1 defines *1-connected*.

¹⁵Davis and Kirk (2001), corollary 6.59

 $^{^{16}}$ May and Ponto (2012), proposition 1.4.3 (and comment 0.0.3 on page xxii for the *connected* premise)

 $^{^{17}}$ Whitehead (1978), section III.4, page 119; Mimura and Toda (1991), section 2.4, page 69

 $^{^{18}}$ May and Ponto (2012), lemma 1.4.2; Davis and Kirk (2001), theorem 6.57; Bott and Tu (1982), proposition 17.6.1 (for $X=S^n)$

¹⁹Each element of $\pi_1(Y)$ is represented by a closed path in Y. The action of $\pi_1(Y)$ on $[X,Y]_0$ transports Y's basepoint around that closed path (Davis and Kirk (2001), definition 6.55 and the text above theorem 6.57).

 $^{^{20}\}mathrm{Arkowitz}$ (2011), definition 5.5.7; Davis and Kirk (2001), definition 6.61

²¹Arkowitz (2011), text below definition 5.5.7; Davis and Kirk (2001), exercise 113

article 69958

5 *n*-equivalence

Consider two CW complexes X and Y. Any map $f: X \to Y$ induces maps

$$f_*: [A, X]_0 \to [A, Y]_0$$
 (2)

for all A, because each map $A \to X$ may be composed with f to get a map $A \to Y$. For the same reason, $f: X \to Y$ induces maps

$$f_*: \pi_j(X, x) \to \pi_j(Y, f(x)) \tag{3}$$

of homotopy groups with the indicated basepoints. The induced maps (2)-(3) are not always bijective,²² but if A is a CW complex and n is any positive integer, these two conditions are equivalent to each other:²³

- the map (2) is bijective when dim A < n and surjective when dim A = n,
- the map (3) is bijective when j < n and surjective²⁴ when j = n. In other words, f is an *n*-equivalence.²⁵

For most maps $X \to Y$, neither of these conditions holds, but if either one of them does hold, then so does the other one.

²²A map $A \to B$ is called **bijective** if each element of B is the image of exactly one element of A.

 $^{^{23}}$ Matumoto *et al* (1984), theorem 2; May (2007), chapter 10, section 3; Arkowitz (2011), definition 2.4.4 and proposition 2.4.6; Whitehead (1978), chapter 4, theorem 7.16 (recalled in Whitehead (1978), chapter 5, beginning of section 3)

²⁴A map $A \to B$ is called **surjective** if each element of B is the image of one or more elements of A.

 $^{^{25}}$ May (2007), chapter 9, section 6

article 69958

6 *n*-equivalence for large *n*

If the induced maps (3) are isomorphisms for all j, then f is called a **weak homotopy equivalence**.²⁶ If X and Y are CW complexes, then a weak homotopy equivalence is a homotopy equivalence,²⁷ so in this case the induced map (2) is bijective for all CW complexes A.²⁸

A similar result is true for finite n if X and Y are both CW complexes with dimension less than n: in this case, an n-equivalence between X and Y is a homotopy equivalence,²⁹ which again implies that (2) is bijective for all A.

 $^{^{26}\}mathrm{Davis}$ and Kirk (2001), definition 7.30; Hatcher (2001), §4.1, p352

 $^{^{27}}$ Maxim (2013), theorem 5.4.1; Mitchell (1997), theorem 6.4 and the text above it; May (2007), the beginnings of chapter 10 and of section 6 in chapter 9

 $^{^{28}\}mathrm{Davis}$ and Kirk (2001), theorem 7.32; Hatcher (2001), proposition 4.22

 $^{^{29}\}mathrm{May}$ (2007), chapter 10, section 3

7 $[M, S^n]$ when M is n-dimensional

If M is a closed, compact, connected, and oriented *n*-dimensional manifold, then $[M, S^n] \simeq \mathbb{Z}$, where the integer assigned to a map $M \to S^n$ is called the **degree** of the map.³⁰ When $M = S^n$, this may also be written $\pi_n(S^n) \simeq \mathbb{Z}$.

To construct an example of a map $M \to S^n$ that is nullhomotopic, choose any *n*-dimensional ball U in M, and choose any point p in S^n . A map $f: M \to S^n$ with $f: U \to S^n \setminus p$ bijective and $f(M \setminus U) = p$ is not nullhomotopic.^{31,32}

A map $X \to Y$ is called **surjective** if every element of Y is the image of at least one element of X. A map $M \to S^n$ with nonzero degree is surjective,³³ but it's not a *covering map* in the sense defined in article 61813. A covering map $X \to Y$ assigns k points of X to each point of Y, with the same k everywhere. Any covering map from a sphere S^n to itself necessarily has |k| = 1. A generic continuous map $S^n \to S^n$ may have any degree, but such a map cannot be k-to-1 with the same k everywhere. To construct an example of a map $S^n \to S^n$ with degree 2, think of S^n as the set of points $(x_0, x_1, ..., x_n) \in \mathbb{R}^{n+1}$ with $\sum_j x_j^2 = 1$. Write $x_0 = \cos \theta$ and $x_j = \hat{x}_j \sin \theta$ for $j \in \{1, ..., n\}$ with $\sum_j \hat{x}_j^2 = 1$ and $0 \le \theta \le \pi$. Then the map $S^n \to S^n$ defined by $(\theta, \hat{x}_j) \to (2\theta, \hat{x}_j)$ has degree 2. This map is 2-to-1 almost everywhere, but not where θ is an integer multiple of $\pi/2$, because it sends the whole equator $(x_0 = 0)$ of the first S^n to a single point $(x_0 = -1)$ of the second S^n .

³⁰Kosinski (1993), chapter IV, corollary 5.8

³¹This is a special case of the construction described in the proof of theorem 1.10 in Hirsch (1976), chapter 5. That construction gives a map $M \to S^n$ of degree m for each $m \in \mathbb{Z}$. (Beware of what I assume is a typo in that source: "i = 1, ..., n" should presumably be "i = 1, ..., m.")

 $^{^{32}}X \setminus Y$ denotes the part of X that remains after deleting Y.

 $^{^{33}}$ Hirsch (1976), chapter 5, text below theorem 1.6

8 The wedge sum and the smash product

An *n*-torus, denoted T^n , is a cartesian product of *n* circles. In particular, $T^2 = S^1 \times S^1$. Section 10 will determine $[T^2, M]$ when *M* is 1-connected. This section introduces some of the ingredients in that calculation.

Consider two topological spaces X and Y with designated basepoints $x_0 \in X$ and $y_0 \in Y$. Their wedge sum, denoted $X \vee Y$, is the subset of their cartesian product $X \times Y$ defined by the union of $X \times y_0$ and $x_0 \times Y$.^{34,35} Given two maps $f: X \to M$ and $g: Y \to M$, a map $\{f, g\}: X \vee Y \to M$ can be defined for which the induced map

$$[X, M]_0 \times [Y, M]_0 \to [X \lor Y, M]_0 \tag{4}$$

given by $([f], [g]) \mapsto [\{f, g\}]$ is bijective.^{36,37}

The **smash product** of two spaces X and Y, denoted $X \wedge Y$, is defined by starting with $X \times Y$ and then collapsing a wedge $X \vee Y \subset X \times Y$ to a single point:³⁴

$$X \wedge Y \equiv \frac{X \times Y}{X \vee Y}.$$

Section 9 will use easy examples to illustrate these things.

³⁴Hatcher (2001), chapter 0, page 10

³⁵This is not related to the wedge product $a \wedge b$ of vectors a and b (article 81674).

 $^{^{36}}$ Arkowitz (2011), corollary 1.3.7

³⁷Arkowitz (2011) writes [X, Y] for the based homotopy set, which is denoted $[X, Y]_0$ here.

9 Examples

The wedge sum $S^1 \vee S^1$ is a pair of circles that intersect each other at a single point, so it has the same topology as the symbol ∞ . The two-dimensional real projective space $\mathbb{R}P^2$ has fundamental group³⁸

$$[S^1, \mathbb{R}P^2]_0 = \pi_1(\mathbb{R}P^2) = \mathbb{Z}_2$$

Use this in the bijection (4) to get

$$[S^1 \vee S^1, \mathbb{R}P^2]_0 \simeq \mathbb{Z}_2 \times \mathbb{Z}_2,$$

which shows the number of classes of based homotopies from $S^1 \vee S^1$ to \mathbb{RP}^2 is four.

The space $S^1 \vee S^1$ is not a manifold, because the point where the circles intersect does not have an open neighborhood homeomorphic to any euclidean space, but it is a CW complex: it is made from two 1-cells whose endpoints meet at a single 0-cell.

The torus T^2 may also be given the structure of a CW complex in which $S^1 \vee S^1$ is a subcomplex: it is made from a subset of the cells from which T^2 is made. To deduce this, think of the torus $T^2 = S^1 \times S^1$ as a rectangle with opposite sides identified. Let U denote the interior of this rectangle. This is a 2-cell. The remainder $T^2 \setminus U$ is the boundary of the rectangle, and identifying opposite sides makes it a wedge sum of two circles: $T^2 \setminus U \simeq S^1 \vee S^1$. Altogether, this represents the torus as the union of a 2-cell U and a 1-dimensional subcomplex $S^1 \vee S^1$.

The smash product of two circles is a 2-sphere. We can deduce this by using the representation in the preceding paragraph. The smash product $S^1 \wedge S^1 = T^2/(S^1 \vee S^1)$ is defined by treating the rectangle's boundary $S^1 \vee S^1$ as a single point. The rectangle's interior is homeomorphic to the interior of a disk, so $S^1 \wedge S^1$ is topologically the same as treating a disk's boundary as a single point. This gives a sphere S^2 .

 $^{^{38}}$ Article 61813

10 $[T^2, M]$ when M is 1-connected

This section shows that if a CW complex M is 1-connected, then the set $\pi_2(M)$ is the same as $[T^2, M]$.³⁹

If a CW complex A is a subcomplex of a CW complex X, then the inclusion $A \to X$ qualifies as something called a **cofibration**.⁴⁰ If an inclusion $A \to X$ is a cofibration, then this sequence is exact:⁴¹

$$[\text{point}, M] \to [X/A, M] \to [X, M] \to [A, M],$$

where the second map is the pullback of the projection $X \to X/A$ and the third one is the pullback of the inclusion $A \to X$. Applying this to the case described in section 9 gives an exact sequence

$$(\text{one-element set}) \to [S^2, M] \to [T^2, M] \to [S^1 \lor S^1, M].$$
(5)

Now suppose that M is 1-connected. In this case, the based homotopy set $[X, M]_0$ is the same as the free homotopy set [X, M], and the homotopy groups $\pi_j(M)$ are the same (as sets) as the free homotopy sets $[S^j, M]$.⁴² Use these facts in (5), together with the bijection (4) to get an exact sequence

(one-element set)
$$\rightarrow \pi_2(M) \rightarrow [T^2, M] \rightarrow$$
 (one-element set). (6)

The exactness of (6) implies that the set $\pi_2(M)$ is the same as $[T^2, M]$, as claimed at the beginning of this section.

³⁹This is a special case of a result derived in https://mathoverflow.net/questions/234367/.

 $^{^{40}}$ Arkowitz (2011), proposition 3.2.4

⁴¹A sequence of maps is called **exact** if the image of each map equals the kernel of the next map (article 29682). Exactness of the part of the sequence going in and out of [X, M] is theorem 6.30 in Davis and Kirk (2001). Exactness of the part that goes in and out of [X/A, M] follows from the fact that the quotient map $X \to X/A$ is surjective, so if $X \to X/A \to M$ is nullhomotopic, then $X/A \to M$ is, too. This shows that the kernel of $[X/A, M] \to [X, M]$ consists of nullhomotopic maps, which is precisely the image of [point, $M] \to [X/A, M]$.

 $^{^{42}}$ Section 3

11 A warning about concatenated homotopies

Sections 12-12 will show that $[T^3, SU(k)]$ is nontrivial for $k \ge 2$. The hardest step is showing that $[T^3, SU(3)]$ is nontrivial. We might be tempted to show this using maps of the form $T^3 \to S^3 \to SU(3)$, because we know that $[T^3, S^3]$ and $[S^3, SU(3)]$ are both nontrivial.⁴³ This doesn't automatically imply that $[T^3, SU(3)]$ is also nontrivial, though, because a map $X \to Z$ of the form $X \to Y \to Z$ may be homotopic to a constant map even if the constituent maps $X \to Y$ and $Y \to Z$ are not. This section describes examples of that phenomenon.

For one example, use $X = Y = S^1$ and $Z = \mathbb{R}P^2$. Represent S^1 as the unit circle in the complex plane, and take the map $X \to Y$ to be the double-covering defined by $e^{i\theta} \mapsto e^{i2\theta}$. To describe the map $Y \to Z$, use a pair of coordinates (a, b) to denote points of \mathbb{R}^2 , and think of $\mathbb{R}P^2$ as a disk in \mathbb{R}^2 of radius π with opposite points of its boundary identified with each other. Define a map $Y \to Z$ by $e^{i\theta} \mapsto (\theta, 0)$ for $-\pi < \theta \leq \pi$. Then the maps $X \to Y$ and $Y \to Z$ are both homotopically nontrivial (neither one can be continuously morphed to a constant map), but their composition can be continuously morphed to a constant map.⁴⁴

The same phenomenon occurs with $Z = \mathbb{R}P^3$ in place of $Z = \mathbb{R}P^2$, which shows that it can occur even when X, Y, Z are all orientable manifolds.

The phenomenon can still occur if X, Y, Z are all 1-connected orientable manifolds. In particular, it occurs when $X = S^4$, $Y = S^3$, and Z = SU(3). In this case, all compositions $X \to Y \to Z$ are homotopically trivial because $\pi_4(SU(3)) = 0$, even though both individual maps in the composition may be homotopically nontrivial because $\pi_4(S^3) = \mathbb{Z}_2$ and $\pi_3(SU(3)) = \mathbb{Z}.^{45}$

⁴³Section 7 says $[T^n, S^n] \simeq \mathbb{Z}$, and article 92035 says $\pi_3(SU(3)) \simeq \mathbb{Z}$.

⁴⁴In the composition $X \to Y \to Z$, the image of X is a loop that starts at $(-\pi, 0)$, travels through the disk to $(\pi, 0)$, which is equivalent to $(-\pi, 0)$, and then travels again from $(-\pi, 0)$ through the disk to $(\pi, 0)$. This map $X \to Z$ can be morphed to on that starts at $(-\pi, 0)$, travels through the disk to $(\pi \cos \epsilon, \pi \sin \epsilon)$, which is equivalent to $(-\pi \cos \epsilon, -\pi \sin \epsilon)$, and then travels from there through the disk to $(\pi, 0)$ so that the image of X is still a closed loop. By continuously morphing ϵ from 0 to π , we can morph the original map $X \to Z$ to a constant map.

 $^{^{45}}$ Articles 61813 and 92035

article 69958

12 Nontriviality of $[T^3, SU(k)]$

The fact that $[T^3, SU(2)]$ is nontrivial follows from the homeomorphism⁴⁶ $SU(2) \simeq S^3$ combined with the fact that $[M, S^3] \simeq \mathbb{Z}$ for any closed 3-dimensional manifold M.⁴⁷

To show that $[T^3, SU(k)]$ is nontrivial for all $k \ge 2$, we can use another result that relates the case k to the case k + 1. If $E \to B$ is a fiber bundle with fiber F, then this sequence of induced maps between homotopy groups is exact:⁴⁸

$$\cdots \to \pi_{j+1}(B) \to \pi_j(F) \to \pi_j(E) \to \pi_j(B) \to \cdots \to \pi_1(B).$$
(7)

This is called the **homotopy sequence of the bundle**.⁴⁹ Set⁵⁰

$$F = SU(k)$$
 $E = SU(k+1)$ $B = SU(k+1)/SU(k)$

and use the relationships⁵¹

$$SU(k+1)/SU(k) \simeq S^{2k+1}$$
 for $k \ge 2$ $\pi_j(S^{2k+1}) = 0$ for $j \le 2k$

to conclude that $\pi_j(F) \to \pi_j(E)$ is bijective for j < 2k and surjective for j = 2k, and then use section 5 to conclude that $[T^n, SU(k)]$ and $[T^n, SU(k+1)]$ have the same number of elements if n < 2k. Set n = 3 and k = 2 to deduce that $[T^3, SU(2)]$ and $[T^3, SU(3)]$ have the same number of elements, which implies that $[T^3, SU(4)]$ also has the same number of elements, and so on. We already know that $[T^3, SU(2)]$ is nontrivial,⁵² so this shows that $[T^3, SU(k)]$ is nontrivial for every $k \ge 2$.

 $^{^{46}}$ Article 92035

 $^{^{47}}$ Section 7

 $^{^{48}\}mathrm{Davis}$ and Kirk (2001), lemma 6.54

 $^{^{49}}$ Steenrod (1951), section 17.3

 $^{^{50}\}mathrm{Article}\ 35490$ shows that a fiber bundle with these ingredients exists.

 $^{^{51}\}mathrm{Mimura}$ and Toda (1991), chapter 1, theorem 2.10 and page 68 (for the first relationship) article 61813 (for the second relationship)

 $^{^{52}}$ Section 12

article 69958

13 Nontriviality of $[T^3, SU(3)]$: cross-check

As a cross-check, this section uses a different method to rederive the fact that $[T^3, SU(3)]$ is nontrivial.

The Lie group SU(3) and the product $S^3 \times S^5$ are both 8-dimensional manifolds. They are not homeomorphic to each other,⁵³ but they do have the same homology groups,⁵⁴ so they are more similar to each other than the number of dimensions alone would suggest. This section shows that $[T^3, S^3 \times S^5]$ is nontrivial and then uses that result to deduce that $[T^3, SU(3)]$ must also be nontrivial.

To show that $[T^3, S^3 \times S^5]$ is nontrivial, use the general relationship^{55,56}

$$[X, A \times B] \simeq [X, A] \times [X, B].$$
(8)

Using the relationship⁵⁷

 $[T^3, S^3] \simeq \mathbb{Z}$

in (8) shows that $[T^3, S^3 \times S^5]$ has at least as many elements as \mathbb{Z} .

The next goal is to relate $[T^3, S^3 \times S^5]$ to $[T^3, SU(3)]$. This will be done by establishing the existence of a map $f: S^3 \times S^5 \to SU(3)$ for which the induced homomorphisms $\pi_j(S^3 \times S^5) \to \pi_j(SU(3))$ are bijective for $j \leq 3$ and surjective for j = 4. This is automatic for $j \in \{1, 2, 4\}, {}^{58}$ but the case j = 3 depends on the map $f.{}^{59}$ If such a map does exist, then the lemma reviewed in section 5 implies that the induced map $[T^3, S^3 \times S^5] \to [T^3, SU(3)]$ is bijective, and combining this with the previous paragraph shows that $[T^3, SU(3)]$ is nontrivial.

The remaining task is to establish the existence of a map $f: S^3 \times S^5 \to SU(3)$ for which the induced homomorphism $\pi_3(S^3 \times S^5) \to \pi_3(SU(3))$ is bijective. The man-

 57 Section 7

⁵³To confirm this, use $\pi_4(S^3 \times S^5) \simeq \mathbb{Z}_2$ (article 61813) and $\pi_4(SU(3)) = 0$ (article 92035).

⁵⁴Article 92035

⁵⁵Arkowitz (2011), corollary 1.3.7. That book uses the notation [X, Y] for what this article calls $[X, Y]_0$, but based and unbased homotopy sets are the same when Y is 1-connected (article 61813).

 $^{^{56}}$ This relationship is also used in the proof of equation (7) in Wang (2021a).

 $^{{}^{58}\}pi_j(S^3 \times S^5)$ and $\pi_j(SU(3))$ are both trivial for $j \in \{1, 2\}$, and $\pi_j(SU(3))$ is trivial for j = 4.

 $^{^{59}\}pi_3(S^3 \times S^5)$ and $\pi_3(SU(3))$ are both isomorphic to \mathbb{Z} , and a homomorphism $\mathbb{Z} \to \mathbb{Z}$ may or may not be bijective.

ifolds SU(2) and S^3 are homeomorphic to each other,⁶⁰ so we can think of $S^3 \times S^5$ as the total space of a (trivial) principal SU(2)-bundle over S^5 . The quotient manifold SU(3)/SU(2) is homeomorphic to S^5 ,⁶⁰ so we can also think of SU(3) as the total space of a (nontrivial) principal SU(2)-bundle over S^5 . Up to isomorphism, these are the only two principal SU(2)-bundles over S^5 .^{61,62} To construct a map fwith the desired property, start with the nontrivial bundle $SU(3) \to S^5$, choose a map $g: S^5 \to S^5$ of degree 2,⁶³ and consider the pullback of the nontrivial bundle by this map.^{64,65} Principal SU(2)-bundles over S^5 are classified by $\pi_4(SU(2)) \simeq \mathbb{Z}_2$, so the fact that g has degree 2 implies that the resulting bundle must be the trivial bundle with total space $S^3 \times S^5$. This relationship between the two bundles provides a map $f: S^3 \times S^5 \to SU(3)$ from one total space to the other.⁶⁶

To show that this map f induces a bijection $\pi_3(S^3 \times S^5) \to \pi_3(SU(3))$, use this general property of pullback bundles: if the original bundle is $E \to B$ and the map $f: B' \to B$ gives the pullback bundle $E' \to B'$, then this induced sequence of homotopy groups is exact:⁶⁷

$$\cdots \to \pi_{j+1}(B) \to \pi_j(E') \to \pi_j(E) \oplus \pi_j(B') \to \pi_j(B) \to \cdots$$

Set $B = B' = S^5$, $E' = S^3 \times S^5$, and E = SU(3) and use $\pi_j(S^5) = 0$ for $j \le 4$ to infer $\pi_j(E') \simeq \pi_j(E)$ for $j \le 3$. This shows that f has the desired property, which is the last ingredient we needed to complete the proof that $[T^3, SU(3)]$ is nontrivial.

 $^{^{60}}$ Section 12

⁶¹This follows from the fact that $\pi_4(SU(2)) \simeq \pi_4(S^3) \simeq \mathbb{Z}_2$ has exactly two elements.

 $^{^{62}}$ A third S^3 bundle over S^5 exists (Steenrod (1951), section 26.9; Wang (2021a)), but it's not a principal bundle. It's a nontrivial fiber bundle that admits a section (Wang (2021b), theorem 1.1).

⁶³The identity $\pi_j(S^j) \simeq \mathbb{Z}$ implies that such a map exists (section 7).

 $^{^{64}\}mathrm{Lafont}$ and Neofytidis (2019), in the proof of lemma 4.2

 $^{^{65}\}mathrm{Article}\ 35490$ defines $pullback\ bundle.$

⁶⁶Hatcher (2001), section 3.H, pages 332-333; Whitehead (1978), chapter 1, text above corollary 7.22

 $^{^{67}}$ Whitehead (1978), chapter 5, top of page 254

14 Homotopy sets and cohomology

Section 3 reviewed how homotopy groups may be expressed in terms of homotopy sets. This section reviews how cohomology groups may be expressed in terms of homotopy sets.⁶⁸

Choose a group G and a positive integer n. A topological space X with the property

$$\pi_k(X) = \begin{cases} G & \text{if } k = n, \\ 0 & \text{otherwise} \end{cases}$$

is called an **Eilenberg-MacLane space**,⁶⁹ denoted K(G, n). A CW complex satisfying this condition exists for each group G if n = 1 and for each abelian group if $n \ge 2$.^{70,71} It is determined uniquely by G and n up to homotopy equivalence.⁷²

When G is abelian, Eilenberg-MacLane spaces are important because of their relationship to cohomology groups. The homotopy set [X, K(G, n)] can be given the structure of an abelian group in a natural way.⁷³ If X is a CW complex, G is an abelian group, and K(G, n) is an Eilenberg-MacLane space, then the group [X, K(G, n)] and the cohomology group $H^n(X; G)$ are isomorphic to each other:^{74,75}

$$[X, K(G, n)] \simeq H^n(X; G).$$
(9)

The isomorphism is called the **Eilenberg-MacLane map**.⁷⁶

 72 Hatcher (2001), proposition 4.30

 73 Arkowitz (2011), text above definition 2.5.10

 74 Davis and Kirk (2001), theorem 7.22, previewed on page 168; Arkowitz (2011), end of section 2.1, definition 2.5.10, remark 2.5.11, and beginning of section 5.1

⁷⁵This is also true using a based homotopy set $[X, K(G, n)]_0$ in place of the free homotopy set [X, K(G, n)] (Hatcher (2001), theorem 4.57 and section 4.3, page 394).

 76 Husemöller *et al* (2008), chapter 9, theorem 6.3

⁶⁸Article 28539 includes a preview of cohomology groups.

⁶⁹Cohen (2023), definition 4.4; Davis and Kirk (2001), definition 7.19

 $^{^{70}}$ Davis and Kirk (2001), theorem 7.20; Hatcher (2001), section 4.2, page 365; Cohen (2023), theorem 7.19 and the text above theorem 7.23

⁷¹Similarly, for each abelian group G and each integer $n \ge 2$, a 1-connected CW complex X exists whose homology groups $H_k(X;\mathbb{Z})$ are G for k = n and zero otherwise (Arkowitz (2011), lemma 2.5.2 and definition 2.5.3). Such an X is called a **Moore space**, denoted M(G, n).

article 69958

15 Example

The circle S^1 is a $K(\mathbb{Z}, 1)$.^{77,78} Use this in equation (9) to get

$$[M, U(1)] \simeq [M, S^1] \simeq [M, K(\mathbb{Z}, 1)] \simeq H^1(M; \mathbb{Z}).$$

This says that homotopy classes of maps $M \to U(1)$ correspond one-to-one with elements of the first cohomology group $H^1(M; \mathbb{Z})$.

 $^{^{77} \}mathrm{Article}\ \mathbf{61813}$

 $^{^{78}}$ U sually, a K(G,n) is not a finite-dimensional manifold.

16 References

Arkowitz, 2011. Introduction to Homotopy Theory. Springer

Bott and Tu, 1982. Differential Forms in Algebraic Topology. Springer

- Čadek *et al*, 2014. "Computing All Maps into a Sphere" Journal of the ACM 61: 1-44, https://arxiv.org/abs/1105.6257
- Cohen, 2023. "Bundles, Homotopy, and Manifolds" http://virtualmath1. stanford.edu/~ralph/book.pdf
- Davis and Kirk, 2001. Lecture Notes in Algebraic Topology. American Mathematical Society
- Frankland, 2013. "Math 527 Homotopy theory, additional notes" https://uregina.ca/~franklam/Math527/Math527_0211.pdf
- Hatcher, 2001. "Algebraic Topology" https://pi.math.cornell.edu/~hatcher/ AT/AT.pdf
- Hirsch, 1976. Differential Topology. Springer-Verlag
- Husemöller et al, 2008. Basic Bundle Theory and K-Cohomology Invariants. Springer
- Kosinski, 1993. Differential Manifolds. Academic Press
- Lafont and Neofytidis, 2019. "Sets of degrees of maps between SU(2)-bundles over the 5-sphere" *Transform. Groups* 24: 1147-1155, https://arxiv.org/ abs/1710.10440
- Matumoto et al, 1984. "On the set of free homotopy classes and Brown's construction" Hiroshima Math. J. 14: 359-369, https://projecteuclid.org/ euclid.hmj/1206133043

- Maxim, 2013. "Math 752 Topology Lecture Notes" https://people.math. wisc.edu/~lmaxim/752notes.pdf
- May, 2007. "A Concise Course in Algebraic Topology" http://www.math.uchicago. edu/~may/CONCISE/ConciseRevised.pdf
- May and Ponto, 2012. More Concise Algebraic Topology: localization, completion, and model categories. University of Chicago Press, https://www.math. uchicago.edu/~may/TEAK/KateBookFinal.pdf
- Mimura and Toda, 1991. Topology of Lie Groups, I and II. American Mathematical Society
- Mitchell, 1997. "CW-complexes" https://sites.math.washington.edu//~mitchell/Morse/cw.pdf
- Steenrod, 1951. The Topology of Fibre Bundles. Princeton University Press
- Wang, 2021a. "Degrees of maps between S³-bundles over S⁵" Topology and its Applications 291: 107610, https://arxiv.org/abs/1810.10154
- Wang, 2021b. "On 1-connected 8-manifolds with the Same Homology as $S^3 \times S^5$ " Acta Mathematica Sinica, English Series 37: 941-956, https://arxiv.org/abs/1810.08478

Whitehead, 1978. Elements of Homotopy Theory. Springer

17 References in this series

```
Article 28539 (https://cphysics.org/article/28539):
"Homology Groups" (version 2024-05-19)
```

Article **29682** (https://cphysics.org/article/29682): "A Quick Review of Group Theory: Homomorphisms, Quotient Groups, Representations, and Extensions" (version 2024-05-21)

Article **33600** (https://cphysics.org/article/33600): "Constructing Principal Bundles from Patches" (version 2024-05-19)

```
Article 35490 (https://cphysics.org/article/35490):
"Universal Principal Bundles" (version 2024-05-19)
```

Article **61813** (https://cphysics.org/article/61813): "Homotopy, Homotopy Groups, and Covering Spaces" (version 2024-05-19)

Article 81674 (https://cphysics.org/article/81674): "The Wedge Product and the Definition of the Determinant" (version 2024-05-21)

Article **92035** (https://cphysics.org/article/92035): "The Topology of Lie Groups: a Collection of Results" (version 2024-05-21)

Article **93875** (https://cphysics.org/article/93875): "From Topological Spaces to Smooth Manifolds" (version 2024-03-24)