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A Simple Model that Predicts the
Liquid-Vapor Phase Transition

Randy S

Abstract When water is heated, it undergoes a sudden tran-
sition from liquid to vapor at a specific temperature. Why does
this happen? Two water molecules tend to attract each other
when they are close enough to each other, but there is a limit
to how close they can get because each water molecule has a
non-zero volume (roughly speaking). This article uses these two
simple inputs to deduce the existence of a liquid/vapor phase
transition, which is characterized by a sudden change in density
when the temperature reaches a special value.

Contents

1 Introduction 3

2 Simplifications 4

3 Preview 5

4 The ideal gas 7

5 The van der Waals fluid 8

6 Intuition behind equation (2) 9

© 2018-2024 Randy S
For the latest version and the revision history, visit cphysics.org/article/73054

1



cphysics.org article 73054 2024-05-21

7 The van der Waals equation of state 10

8 The combined system 11

9 How the model will be used 12

10 Finding the peaks 13

11 Graphic solution 15

12 Proofs for section 11 17

13 Example with two equal maxima 18

14 Realistic values 19

15 Why liquids boil 23

16 Things this article didn’t address 24

17 References 25

18 References in this series 25

2



cphysics.org article 73054 2024-05-21

1 Introduction

A fluid (either liquid or vapor) can be loosely defined as a substance that assumes
the shape of its container. If it settles to the bottom of the container, we call it a
liquid. If it expands to fill the container, we call it a vapor (or gas).

Those differences between liquid and vapor phases are mainly a consequence
of their different densities: under ordinary conditions, liquid water is ∼ 105 times
more dense than water vapor. The higher-density phase (liquid) is approximately
incompressible because the molecules are already packed relatively close together.
The lower-density phase (vapor) is very compressible because the molecules are
relatively far away from each other. That’s why the density of the atmosphere de-
creases gradually with increasing altitude, whereas the density of the ocean changes
relatively little from the bottom to the surface.

The boiling phenomenon is a sudden transition from liquid to vapor at a specific
temperature.1 The fact that this occurs so suddenly is part of why we tend to think
of liquid and vapor as distinct phases. However, when the pressure is high enough,
the sudden transition disappears (section 16): the density changes smoothly as a
function of temperature, with no liquid/vapor transition at any temperature.2,3

These observations suggest that the essence of the liquid/vapor phase transition
is the sudden change in density when a particular temperature is crossed, so if we
can reproduce this phenomenon using a simple model, then we can use that simple
model to understand the essence of why liquids boil. Many different real fluids
exhibit a liquid/vapor phase transition, so the existence of such a phase transition
must be relatively insensitive to most of the microscopic details.4 That gives us
hope that we might be able to reproduce this phenomenon using a simple model,
and this article shows that we really can.

1The opposite transition, from vapor to liquid, is called condensation.
2To learn more about this, the keywords are critical point, in the context of thermodynamics.
3Transitions to other phases, like solid and plasma phases, are not considered in this article.
4Different fluids boil at different temperatures, so the quantitative properties of the boiling phenomena apparently

do depend on specific molecular properties; but our goal here is only to understand the general reason for the phase
transition, not the quantitative details for any specific substance.
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2 Simplifications

The real boiling phenomenon involves several complications, most of which are not
essential for understanding why the phase transition must occur. The goal in this
article is to explain why the phase transition must occur, without any inessential
complications.

One complication is that real boiling occurs inhomogeneously, through the for-
mation of bubbles. The model used here assumes that any changes in density,
including any sudden changes, occur evenly throughout the whole fluid.

Another complication comes from allowing the vapor from the boiling fluid to
mix with the ambient air. To eliminate this complication, this article uses a model
with an impermeable but movable partition separating the fluid of interest from
the ambient air. The fluid of interest, which I’ll just called the fluid, is on one side
of the partition. On the other side of the partition is an ideal gas, which I’ll call
air. The whole system will be in a closed container, as depicted here:

the ambient airthe fluid of
interest

movable partition

closed container

Another complication is the tendency of the liquid to settle to the bottom of its
container. In this article, gravity is neglected, so there is no “bottom.” When
the fluid is in its liquid phase, the pressure exerted by the air keeps the partition
pressed firmly against the liquid, with no empty space. When the fluid boils, the
pressure exerted by the resulting vapor pushes the partition back, compressing the
air on the other side until a new equilibrium position is reached. Again, the key
difference between the liquid and vapor phases is their difference in density: the
fluid occupies a larger volume when in the vapor phase than it does when in the
liquid phase.
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3 Preview

A cupfull of water contains an enormous number of molecules. Tracking the motion
of all of these molecules is not feasible, but the enormity of the number of molecules
allows us to use statistical mechanics (article 66313), which is much easier. This
article uses statistical mechanics to explain why the liquid/vapor phase transition
occurs, using a simple model for the fluid and an even simpler model for the air.
Specifically:

• For the fluid, this article uses a van der Waals fluid. In this model, each
molecule of the fluid tends to attract its neighbors, up to a limit at which the
neighbors are not allowed to come any closer. In other words, each molecule
likes company, as long as that company doesn’t get into its personal space.

• For the air, this article uses the ideal gas model. This means that each
air molecule will be oblivious to its neighbors, neither attracting them nor
excluding them from its personal space.

The liquid/vapor phase transition occurs in the fluid, with the air serving as a
reservoir that can exchange energy and volume (but not molecules) with the fluid.

A state of the combined system, specified in complete microscopic detail, is
called a microstate. The combined system has a fixed total volume, and we will
consider what happens when we smoothly change its total energy. For any given
total energy, we can count the number Ω(ν) of microstates that are consistent with
any given value ν of the fluid’s volume – that is, with any given position of the
partition. Some values of ν account for a larger number of microstates than others.
For most combinations of the total volume and total energy, the overwhelming
majority of the microstates are all concentrated near one value of ν. The graph of
the Ω(ν) then has a single peak at this one value of ν, and this peak is very narrow
and much taller than the rest of the graph. Statistical mechanics then predicts that
the partition remains at that one position, as long as we don’t change the system’s
total energy or total vlume.
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However, for certain combinations of the total energy and total volume, the
graph of Ω(ν) has two very narrow peaks of equal height. By smoothly varying the
total energy, we can change which of these two peaks is the highest one. Because
of the enormity of the numbers involved, a very slight change in the total energy is
enough to change which one of these two peaks is overwhelmingly higher than the
other. Statistical mechanics then predicts that the observed value of ν will jump
from one of these values to the other. This sudden change in volume – which entails
a sudden change in density – is the essence of the liquid/vapor phase transition.
This article doesn’t try to reproduce the details of the boiling or condensation
processes, like bubble formation or droplet formation, but it does explain why a
sudden change in density must occur.

In practice, we normally control the combined system’s temperature instead of
its total energy, but the conclusion is the same: for a special value of the tempera-
ture, Ω(ν) is concentrated in two peaks of equal height, and the slightest deviation
from this special temperature makes one of the two values of ν overwhelmingly
more likely than the other. This is why liquids boil.
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4 The ideal gas

Article 66313 introduced the basic idea of statistical mechanics, which derives a
system’s thermodynamic properties from a knowledge of the entropy S(E, V ) ∝
log Ω(E, V ), where Ω(E, V ) the number of mutually orthogonal states of the system
with total energy ≤ E and volume V . (The dependence of Ω on other macroscopic
parameters can also be considered, but this article focuses on E and V .)

For an ideal gas, the function Ω(E, V ) is5 (article 23206)

Ω(E, V ) ∝ END/2V N , (1)

where N is the number of molecules, and D is the number of dimensions of space
(normally D = 3). This is what we’ll use for the air on one side of the partition.

If the fluid on the other side of the partition were also an ideal gas, then no
phase transition would occur. To get a phase transition, we need to consider a
slightly more realistic model. We can still treat the air as an ideal gas, but we’ll
use something different for the fluid, as described in the next section.

5The proportionality factor depends on N but not on E or V .
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5 The van der Waals fluid

For the fluid, we’ll use

Ω(E, V ) ∝
(
E +

aN 2

V

)DN/2

· (V − bN)N , (2)

where a, b are constants characterizing the fluid. Equation (1) is the special case
a = b = 0. More generally, equation (2) describes a van der Waals fluid. This
(slightly) more realistic than equation (1), in two respects:

• The parameter b > 0 accounts for volume of each molecule’s “personal space,”
inside which other molecules are not permitted.

• The parameter a > 0 accounts for an attractive interaction between molecules
that are outside each other’s personal space. The factor of V in the denomi-
nator accounts for the attraction being stronger when the molecules are closer
together.

Section 6 describes this intuition in more detail. Empirically, in cases where (2) is
a good approximation, the constant b is roughly the volume of one molecule (a few
angstroms in diameter), and a typical value of the constant a is6

a ∼ b× (100 Kelvin).

The variables E, V are subject to the constraints

E +
aN 2

V
> 0 V − bN > 0,

so that both factors on the right-hand side of (2) are positive for all N,D.

6Page 178 in Reif (1965).
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6 Intuition behind equation (2)

The ideal gas model ignores interactions between molecules, so the total energy E
is the same as the total kinetic energy K. The derivation in article 23206 actually
showed that

Ω(E, V ) ∝ KND/2V N , (3)

where K is the total kinetic energy, independently of any assumptions about the
relationship between E and K. The factor V N comes from the idea that each of
the N molecules can occupy any location in the volume V . In reality, a molecule
has a finite size; each molecule takes up some space, making this space unavailable
to the other molecules. This reduces the number of ways that the molecules can
be distributed, so the factor V N is an overestimate. To make the model a little
more realistic, we can replace the factor V N with (V − bN)N , where b is a positive
constant. The constant b may be roughly interpreted as the volume that is used
up by an individual molecule, so that the V − bN represents the remaining space.
After this replacement, equation (3) becomes

Ω(E, V ) ∝ KDN/2 · (V − bN)N . (4)

Now assume some kind of attractive force between molecules. To be specific, sup-
pose that the average energy per molecule is related to the average kinetic energy
per molecule like this:

E

N
=
K

N
− a

V/N
, (5)

where a is some positive constant. The term inversely proportional to V/N , the
average volume per molecule, says that the energy decreases when the molecules
come closer together. This is the hallmark of an attractive force. Using equation
(5) in (4) gives the result (2).
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7 The van der Waals equation of state

Equation (2) gives this expression for the entropy:7

S(E, V ) ≡ log Ω(E, V )

= constant +
ND

2
log

(
E +

aN 2

V

)
+N log(V − bN). (6)

In statistical mechanics, temperature T and pressure p are defined by (article 66313)

1

T
≡ ∂S

∂E

p

T
≡ ∂S

∂V
. (7)

Use equation (6) in the definitions (7) to get

p

T
=

N

V − bN
− a

(V/N)2

1

T
,

which can be rearranged to get

(
p+

a

v2

)
(v − b) = T (8)

where v ≡ V/N is the average volume per molecule. This is called the van der
Waals equation of state, which is why I’m using the name “van der Waals” for
the model defined by (6).

By the way, equations (5), (6), and (7) imply T = (2/D)K/N , so the temprature
is proportional to the average kinetic energy per molecule.

7I’m using units in which Boltzmann’s constant equals 1.
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8 The combined system

Now the model that was previewed in sections 2-3 will be described mathematically,
using the ingredients introduced in sections 4-5. Notation:

combined fluid air

energy E ε E − ε

volume V ν V − ν

number of molecules N n N − n

For given values of E, V, ε ν, the number of microstates of the combined system is

Ω(E, V, ε, ν) = Ωfluid(ε, ν) Ωair(E − ε, V − ν), (9)

where the functions on the right-hand side are defined by

Ωfluid(ε, ν) ∝
(
ε+

an2

ν

)Dn/2

· (ν − bn)n (10)

Ωair(E − ε, V − ν) ∝ (E − ε)D(N−n)/2(V − ν)N−n. (11)

Equation (10) is the van der Waals model (2), and equation (11) is the ideal gas
model (1). The allowed ranges of ε and ν are

bn < ν < V − an2/ν < ε < E, (12)

so all of the factors on the right-hand sides of (10)-(11) are positive.
For each allowed combination of V and E, we want to determine the values

of ε and ν that maximize the number (9) of microstates. As previewed in section
3, we can use this information to explain why liquids boil, using the principles of
statistical mechanics that were introduced in article 66313.
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9 How the model will be used

The total energy E and total volume V are prescribed by an external agent, but
ε and ν are free to vary on their own. The partition prevents the two subsystems
(fluid and air) from exchanging molecules with each other, but it allows them to
exchange energy with each other, and it is freely movable so that they can also
exchange volume with each other. For given values of E and V , equation (9)
counts the number of microstates as a function of ε and ν. The calculations in the
following sections lead to these results:

• For most values of E and V , the overwhelming majority of the microstates
are concentrated very close to a single point in the ε-ν plane, so the graph of
this function of ε, ν has a very narrow peak that is much higher than the rest
of the surface.

• For some values of V , a special value of E exists for which the surface has
two narrow peaks of equal height, at two different points in the ε-ν plane.

• Slightly above or below that special value of E, one of these two peaks is
much taller than the other. Below that special value of E, the smaller-ν peak
dominates. Above that special value of E, the larger-ν peak dominates. The
shape of the surface (9) changes smoothly as E is increased, but the honor of
being the highest peak jumps discontinuously from one to the other.

Statistical mechanics then predicts a sudden change in the observed values of ν and
ε. The sudden change in volume ν implies a sudden change in the fluid’s density,
which is the essence of the boiling phenomenon.8,9

8The corresponding change in ε is related to something called the latent heat of vaporization.
9In this model, the density of the air also changes, because the system’s total volume is fixed. However, the

change in the air’s density is negligible when N − n ≫ n, which is an appropriate condition to consider. (Think of
a small pot of boiling water in contact with a much larger atmosphere.)
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10 Finding the peaks

We want to find the points in the ε-ν plane that maximize the quantity (9), which
is the same as maximizing the log of (9). At such a point, the partial derivatives
must be zero:

∂

∂ε
log Ω(E, V, ε, ν) = 0

∂

∂ν
log Ω(E, V, ε, ν) = 0. (13)

We can solve equations (13) using a two-step process:

• First solve the first equation for ε, which gives ε as a function of ν. This
defines a curve C in the ε-ν plane, and the maxima of Ω are on this curve.

• Next, substitute this expression for ε back into (9) to get the number of
microstates along the curve C, parameterized by ν. Finding the maxima of
this function of ν gives us the maxima of the original function Ω.

The first of equations (13) gives

n

ε+ an2/ν
=
N − n
E − ε

, (14)

which can be rearranged to get10

ε+
an2

ν
=

n

N

(
E +

an2

ν

)
. (15)

This defines a curve C in the ε-ν plane. Use equations (14) and (15) in (9) to get
this expression for the height of the surface (9) along the curve C:

ΩC(ν) ∝
(
ν − bn

)n (
V − ν

)N−n (
E +

an2

ν

)ND/2

. (16)

The proportionality factor depends on N, n but not on E, V, ε, ν. The next step is
to find the maxima of this function.

10This shows that any value of ε that satisfies (13) is automatically in the allowed range (12).
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Use the abbreviations

r ≡ n/N α ≡ EV/(an2)

δ ≡ D/2 β ≡ bn/V (17)

The function (16) may be written as

ΩC(ν) ∝
(
ω(ν/V )

)N
with a proportionality factor that depends on V but not on E, and

ω(u) ≡
(
u− β

)r (
1− u

)1−r
(
α +

1

u

)δ

. (18)

We want to find the maxima of this function ω(u), which is equivalent to finding
the maxima of logω(u). At a maximum, the derivative must be zero. Equation
(18) gives this expression for the derivative:

d

du
logω =

r

u− β
− 1− r

1− u
− δ

αu2 + u
. (19)

All three denominators are positive (recall the inequalities (12)), so requiring (19)
to be zero leads to a cubic equation for u ≡ ν/V :

αu3 = c2u
2 − c1u+ βδ β < u < 1 (20)

with

c2 = (δ − 1) +
(
r + (1− r)β

)
α

c1 = (δ − r)− (δ + 1− r)β.

Equation (20) can be solved explicitly, but that’s messy. The next section describes
a more intuitive way of analyzing equation (20).
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11 Graphic solution

Define a new independent variable x by

u =
c2

α
x,

and substitute this into (20). Move the quadratic term to the left-hand side and
divide by the coefficient of the x3 term to get

x3 − x2 = A(B − x) (21)

with

A ≡ αc1

c2
2

B ≡ αβδ

c1c2
.

We want to know when equation (21) has three distinct real-valued solutions, which
corresponds to (16) having two distinct peaks (with a local minimum between the
two peaks). We can study this by graphing both sides of equation (21) on the same
axes. Values of x where the two graphs intersect each other are values of x that
satisfy equation (21). Figure 1 shows an example for which equation (21) has three
solutions.

For what values of A and B does equation (21) have three real solutions? Here
are a few simple observations:

• If B = 0 and 0 < A < 1/4, then it has three real solutions.

• If B = 0 and A > 1/4, then it cannot have three real solutions.

• If AB > 1/27, then it cannot have three real solutions.

• For any given value of AB with 0 < AB < 1/27, positive values of A exist
for which it has three real solutions.

The next section sketches proofs of these statements. Beware that even if three real
solutions of (21) exist, they might not all be in the range allowed by β < u < 1.
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0.0 0.2 0.4 0.6 0.8 1.0
x

0.15

0.10

0.05

0.00

0.05

(x 1)x2 and A(B x)

Figure 1 – The blue curve is the left-hand side of equation (21). The red line is the right-hand
side with A = 0.25 and B = 0.03. The two curves intersect each other at three points, which
are the values of x that satisfy equation (21).
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12 Proofs for section 11

This section outlines how to deduce the observations listed at the end of section
11.

Choose a value of AB, which is the value of the right-hand side of (21) at x = 0.
The quantity A is the magnitude of the slope of the line defined by the right-hand
side of (21). Keeping that value of AB fixed, suppose that A can be chosen so that
(21) has three real solutions. Then, by increasing or decreasing the value of A, we
can make the line tangent to the graph of the left-hand side of (21). With this in
mind, consider two cases:

• If B = 0 (so that AB = 0), then the only two values of A that make the line
tangent to the left-hand side of (21) are A = 0 and A = 1/4. This establishes
the first two observations at the end of section 11.

• Now consider the straight line tangent to the curve y(x) = x3−x2 at any given
point x = x0. Straightforward calculation tells us where that line intersects
the y-axis, and more straightforward calculation tells us that 1/27 is the
threshold between points on the y-axis that are and aren’t intersected by at
least one of those tangent lines.11 This establishes the other two observations
at the end of section 11.

11Here are the straightforward calculations. At any given point x = x0, the equation for the line tangent to y(x)
is yL(x) = y(x0) + (x− x0)y′(x0) where y′ is the derivative of y. This line intercepts the y-axis at yL(0) = x20 − 2x30.
Maximizing this with respect to x0 shows that the maximum occurs for x0 = 1/3, which gives yL(0) = 1/27 as the
highest point on the y-axis that is intercepted by any of the tangent lines.
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13 Example with two equal maxima

The example in figure 1 was made by choosing the values of A and B, but evaluating
(18) requires knowing the values of r, α, β, which are not uniquely determined by
A,B. The pictures below show an example with r = 0.1, α ≈ 596.8, β = 0.005,
and δ = 3/2. which gives A ≈ 0.2096 and B ≈ 0.0513. The first picture shows the
two sides of equation (21), which intersect each other three times, and the second
picture shows the log of the quantity (18), which has two peaks of equal height.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.15

0.10

0.05

0.00

0.05

(x
1)

x2  a
nd

 A
(B

x)

0.00 0.02 0.04 0.06 0.08 0.10 0.12
/V

9.2650

9.2675

9.2700

9.2725

9.2750

9.2775

9.2800

9.2825

9.2850

9.2875

lo
g(

(
/V

))
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14 Realistic values

The model only has two parameters a, b characterizing the interactions between
molecules. That’s not enough to characterize the diversity of real molecules, so we
shouldn’t expect the model’s predictions to be quantitatively accurate for real flu-
ids, but we can still ask whether the model exhibits a liquid/vapor phase transition
for any semi-realistic values of the model’s inputs. Let’s try these round values:

• D = 3

• V = 1 meter3

• N = 1025, which is in the right neighborhood for nitrogen gas at atmospheric
pressure for the given V at a temperature consistent with the boiling point
of water.

• n = 1022, which says that the number of fluid molecules (n) is a small fraction
of the total number of fluid + air molecules (N), so that the air can act as a
reservoir capable of exchanging plenty of energy with the fluid.

• b = (10−10 meter)3, which is in the right neighborhood for the volume of a
single molecule.

Using these values, our strategy will be to look for a value of α ≡ EV/(an2) at
which the quantity (18) has two peaks of equal height, which is the hallmark of the
liquid/vapor phase transition. Using the values suggested above gives

r = 10−3 c1 ≈ δ = 3/2

β = 10−8 c2 ≈ 1/2 + rα.

This implies B ≈ β/(r + 1/2α) < β/r = 10−5, which is close to zero, so the
observations listed at the end of section 11 suggest that A should be somewhere in
the range 0 < A < 1/4. To relate this to α, write

c2 = P +Qα

19
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with
P ≡ δ − 1 = 1/2 Q ≡ r + (1− r)β ≈ 10−3 (22)

so that
A =

αc1

(P +Qα)2
.

Given a value of A, the corresponding values of α are the solutions of the quadratic
equation (P + Qα)2A = c1α. In particular, taking A → 0 corresponds to taking
either α→ 0 or α→∞, and taking A = 1/4 corresponds to taking either

α ≈ 1

24
or α ≈ 4c1

Q2
≈ 6× 106.

Looking in the range 0 < A < 1/4 therefore corresponds to looking in the ranges

0 < α .
1

24
6× 106 . α <∞.

Values of α in the smaller range may admit three solutions of equation (20), but
not within the allowed range of values of u ≡ ν/V , so we should consider values
of α in the larger range instead. Figure 2 shows the result for α ≈ 1.0608 × 1010,
which gives two peaks of equal height. The first peak is so narrow that it looks
like a vertical line in that figure, so figure 3 presents the same information in a
different way – with log(ν/V ) on the horizontal axis instead of ν/V – to clarify the
structure.

Section 15 explains the significance of this result.
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0.000 0.002 0.004 0.006 0.008
/V

34.610

34.612

34.614

34.616

34.618

lo
g(

(
/V

))

Figure 2 – Graph of (18) for r = 0.001, α ≈ 1.0608 × 1010, β = 10−8, and δ = 3/2. Figure 3
presents the same information in a different way to clarify the structure.
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(
/V
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Figure 3 – The same as figure 2, but with the horizontal axis changed to log(ν/V ) instead of
ν/V , which has the effect of “zooming in” more on smaller values of ν/V to clarify the structure.
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15 Why liquids boil

Using semi-realistic values for the model’s inputs, section 14 showed that the energy
E can be tuned to a special value Eboil where the quantity defined in (16) has two
peaks of equal height. These two peaks occur at

log(ν/V ) ≈ −18 ⇒ ν ≈ 10−8 V

log(ν/V ) ≈ −7 ⇒ ν ≈ 10−3 V.

where ν is the volume of the fluid and V is the total volume of the combined fluid +
air system. These two values of ν correspond to a high-density state (“liquid”) and
a low-density state (“vapor”), respectively. The ratio of these densities is ≈ 10−5,
which is realistic.12

Changing the total energy E changes the relative heights of the two peaks.
When E < Eboil, the liquid peak higher than the vapor peak. When E > Eboil,
the vapor peak higher than the liquid peak. In terms of the quantity ω defined in
equation (18), a ±0.1% change in E changes the peak-height ratio by only ∼ 10−5.
That might seem insignificant, but remember that the quantity (16), which counts
the number of microstates, is proportional to ωN with N = 1025 in this example, so
the highest peak in (16) is highest by far whenever E deviates even slightly from
Eboil. To quantify this, use

(1 + 10−5)N ∼ 10 4×1019

to see that a ±0.1% change in E changes the ratio of the numbers of microstates
associated with the two peaks by an enormous factor. The peaks in the function
ωN are likewise extremely narrow compared to the peaks in ω, so practically all of
the microstates are consistent with whichever value of ν hosts the highest peak.
Altogether, this is why the density of a fluid changes abruptly when the total energy
reaches a special value. In other words, this is why liquids boil.

12Under normal conditions, the density of liquid water is ≈ 1000 kg/m3, and the density of water vapor is ≈ 0.01
kg/m3, consistent with the ratio ≈ 10−5.
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16 Things this article didn’t address

This article focused on explaining why liquids boil, using a simple model that
reproduces the essence of the phenomenon. To conclude, I’ll acknowledge a few
interesting things that this article didn’t address:

• This article used a specific model for the air on the other side of the partition.
In fact, most details of the air model don’t really matter. Just about any
compressible heat reservoir should work.

• For simplicity, this article parameterized the analysis in terms of the system’s
total energy. The analysis could be recast in terms of the system’s tempera-
ture instead, which is how we normally parameterize things in practice.

• This article focused on the discrete change in ν at the boiling point, but it
didn’t address the significance of the corresponding discrete change in ε, which
turns out to be related to something called the latent heat of vaporization.

• This article didn’t try to estimate the temperature at which the liquid boils.
To estimate the temperature, we would need to choose a specific value for
the parameter a in (5), based on some other criterion like giving the correct
latent heat of vaporation. Of course, we shouldn’t expect the simple model
used here to match real fluids in perfect quantitative detail.

• This article didn’t address the critical point, even though its existence is
correctly predicted by the same model. Thanks to the critical point, if the
pressure is high enough, then boiling does not occur at any temperature.
We can pass smoothly from the liquid phase to the vapor phase without any
discrete phase transition (no boiling), by following a path that goes around
the critical point in pressure-temperature space. Many real fluids, including
water, have such a critical point. This corroborates the idea that a sudden
change in the fluid’s density really is the essence of the boiling phenomenon.
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