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States With and Without
State-Vectors

Randy S

Abstract A normalized positive linear functional –
more concisely called a state – is the mathematical structure
that quantum theory uses to assign probabilities to the various
possible outcomes of a measurement, based on whatever we
already know about the current status of the physical system.
This article introduces the mathematical concept of a state
and its relationship to state-vectors. For motivation, Gleason’s
theorem and its relatives are briefly reviewed. A general form
of the Cauchy-Schwarz inequality is derived.
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1 Motivation

In quantum theory, projection operators (article 74088) are used to represent the
possible outcomes of a measurement. If every measurable quantity had a well-
defined value whether or not it were actually measured, then we should be able to
assign a boolean value ∈ {0, 1} to every projection operator, indicating whether
that outcome would be realized if the relevant measurement were done. However,
the fact that most projection operators do not commute with each other makes
such an assignment mathematically impossible. Specifically, the Kochen-Specker
theorem1 says that such an assignment is impossible for all of the projections
operators on a three-dimensional Hilbert space,2 which is a subset of the projection
operators used to represent the possible measurement outcomes for the various
observables in any nontrivial model.

The next best thing is to assign probabilities to the possible outcomes, which is
what quantum theory does. The standard assumption is that the set of projection
operators representing all possible outcomes of all possible measurements coincides
with the set of all projection operators in some noncommutative von Neumann
algebra.3 If we insist on being able to assign probabilities to all of the projection
operators in a consistent way,4,5 then the theorems reviewed below apply.

1A concise version of the proof is shown in Conway and Kochen (2009) and in endnote 4 of Conway and Kochen
(2006).

2Peres (1990) presents an even easier proof (attributed to Mermin) in the context of a four -diensional Hilbert
space, but with the help of an extra assumption that the Kochen-Specker theorem does not need.

3Article 74088 introduces the concept of a von Neumann algebra. One example is the algebra of all linear operators
on a given Hilbert space.

4Here, consistent means satisfying conditions (1)-(3), below. If we also try to make the assignment consistent
with näıve conditions extrapolated from everyday experience, then we run into problems. This is the significance of
Bell inequalities.

5This is probably more than we really need, for two reasons. First, many of the things that the standard
assumption formally designates as “observables” might not actually be measurable, given the limited resources
available in the physical universe. This is analyzed in Omnès (1994), chapter 7, section 8, pages 308-309, which
concludes “Some observables cannot be measured, even as a matter of principle.” Second, not all observables are
actually measured, even if they could be measured. For making predictions, we really only need to assign probabilities
to the possible outcomes of observables that will actually be measured.
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Mathematically, assigning a probability ρ(P ) to each projection operator P
amounts to assigning a real number between 0 and 1:

0 ≤ ρ(P ) ≤ 1 for each P. (1)

If P and Q are mutually orthogonal projection operators, then P + Q is also a
projection operator. Mutually orthogonal projection operators represent mutually
exclusive outcomes, and their sum P + Q represents the outcome “either P or
Q occurs.” For this interpretaiton to be consistent with the assignments (1), we
should require

ρ(P +Q) = ρ(P ) + ρ(Q) whenever PQ = 0, (2)

ρ(identity operator) = 1. (3)

Theorems have been proven about the mathematical implications of these con-
ditions. The most famous of these is Gleason’s theorem.6 Gleason’s theorem
applies to the simplest type of von Neumann algebra, namely type I. More general
theorems proven by Christensen (1982) and Yeadon (1983-1984) extend the result
to von Neumann algebras of all types: I, II, and III. An even more general theo-
rem proven in Bunce and Wright (1992) assumes only the condition (2), without
assuming (1) or (3).

According to these theorems, if an assignment of real numbers to projection
operators satisfies conditions (1)-(3), then the assignment can be extended to a
normalized positive linear functional, which is a special way of assigning com-
plex numbers to all of the operators in the von Neumann algebra, not just to the
projection operators. This article introduces the concept of a normalized positive
linear functional, more concisely called a state. This is the mathematical structure
that quantum theory uses to assign probabilities to the various possible outcomes
of a measurement, based on whatever we already know about the current status of
the physical system.

6Gleason’s theorem is reveiwed in Hamhalter (2003). A relatively concise and accessible proof is given in Cooke
et al (1985).
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2 States

As in article 74088, let A∗ denote the adjoint of an operator A. A normalized
positive linear functional ρ is something that takes any operator A as input and
returns a complex number ρ(A) as output, subject to these conditions:

• ρ is normalized, which means ρ(1) = 1.

• ρ is positive, which means ρ(A) is a positive real number whenever A is a
positive operator. (An operator A is called positive if A = B∗B for some
operator B).

• ρ is linear, which means ρ(A+B) = ρ(A) + ρ(B) and ρ(zA) = zρ(A) for all
operators A,B and all complex numbers z.

“Normalized positive linear functional” is a long name. Even experts think the
name is too long, so they often just call ρ a state.7

The conditions listed above imply:

• ρ(A∗) is the complex conjugate of ρ(A).

To prove this, consider the operator B ≡ z+A where z is a complex number (times
the identity operator). The quantity ρ(B∗B) must be a real number because ρ is
positive, and it must satisfy

ρ(B∗B) = z∗z + ρ(A∗A) +
(
z∗ρ(A) + zρ(A∗)

)
because ρ is normalized and linear. Together, these imply that the term in large
parentheses must be a real number, and this must be true for all complex numbers
z, so ρ(A∗) must be the complex conjugate of ρ(A).

7In physics, the word state is often used to refer to the actual status of the physical system, independently of how
much we happen to know about it, but no such connotation is intended here. In practice, the (mathematical) state
ρ is used to represent whatever we happen to know about the status of the physical system, without presuming that
the description is “complete.” We still call it a state.
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3 Constructing states

If |ψ〉 is a nonzero element of the Hilbert space H, then the functional8

ρ(· · · ) =
〈ψ| · · · |ψ〉
〈ψ|ψ〉

(4)

is a state, and then |ψ〉 is called the state-vector. Notice that multiplying |ψ〉 by
a nonzero complex number z has no effect on the state (4), because the factors of
z cancel between the numerator and denominator. In other words, for any nonzero
complex number z, the state-vectors |ψ〉 and z|ψ〉 represent the same state.

More generally, if |a1〉, |a2〉, ... is any list of nonzero vectors, then the functional
defined by

ρ(· · · ) =

∑
n〈an| · · · |an〉∑
n〈an|an〉

(5)

is a state. Similarly, if ρ1, ρ2, ..., ρN are states and λ1, λ2, ..., λN are positive real
numbers that add up to 1, then

ρ(· · · ) ≡
∑
n

λn ρn(· · · )

is another state. The state (5) has this form with ρn(· · · ) = 〈an| · · · |an〉/〈an|an〉
and λn = 〈an|an〉/

∑
k〈ak|ak〉.

If ρ is a state and A is any operator for which ρ(A∗A) 6= 0, then the functional
defined by

ρ(· · · |A) ≡ ρ(A∗ · · ·A)

ρ(A∗A)
(6)

is another state. The notation ρ(· · · |A) isn’t standard, but it’s useful. It is de-
liberately similar to the standard notation for a conditional probability, which is
related to how the construct (6) is used in quantum theory.

8Page 7 in Fewster and Rejzner (2019) calls this a vector state.
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4 The Cauchy-Schwarz inequality

Any state ρ satisfies

|ρ(B∗A)|2 ≤ ρ(A∗A)ρ(B∗B) (7)

for all operators A and B. This is called the Cauchy-Schwarz inequality. It is
related to another inequality with the same name that was introduced in article
90771.

To derive (7), use the fact that ρ is linear to get

ρ
(

(A− zB)∗(A− zB)
)

= ρ(A∗A)− z ρ(A∗B)− z∗ ρ(B∗A) + |z|2ρ(B∗B)

and use the fact that ρ is positive to get

ρ
(

(A− zB)∗(A− zB)
)
≥ 0.

Both of these relationships hold for any pair of operators A,B and any complex
number z. Set z = ρ(B∗A)/ρ(B∗B) to complete the derivation.
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5 States and projection operators

In quantum theory, projection operators are used to represent the possible outcomes
of a measurement, and a state is used to assign probabilities to those outcomes
based on whatever we already know about the current status of the physical system.
If P is a projection operator and ρ is a state, then ρ(P ) is the probability that
quantum theory assigns to this possible outcome.

For this to make sense, the quantity ρ(P ) must satisfy

0 ≤ ρ(P ) ≤ 1. (8)

To see that this condition is satisfied, use the fact that ρ is linear and normalized
to get ρ(P ) + ρ(1 − P ) = 1, and then use the identities P = P ∗P and 1 − P =
(1 − P )∗(1 − P ) together with the fact that ρ is positive to get ρ(P ) ≥ 0 and
ρ(1 − P ) ≥ 0. Altogether, this implies (8), because two non-negative numbers
cannot add up to 1 unless both of them are ≤ 1.

The notation introduced in equation (6) is deliberately similar to the standard
notation for a conditional probability. The resemblance is strengthened by this
result:9

The condition ρ(P ) = 1 implies ρ(· · · ) = ρ(· · · |P ). (9)

Proof: The complementary projector Q ≡ 1− P satisfies ρ(Q) = 0. Linearity im-
plies ρ(PAP ) = ρ(A)−ρ(QA)−ρ(AQ)+ρ(QAQ). The Cauchy-Schwarz inequality
combined with ρ(Q∗Q) = ρ(Q) = 0 gives ρ(Q · · · ) = ρ(· · ·Q) = 0. Altogether, this
gives ρ(PAP ) = ρ(A), which immediately implies (9).

9The real reason for the notation comes from the postulates of quantum theory, which this article only vaguely
foreshadows.
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