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The Action for Models with
Non-Product Gauge Groups and

Multiple Coupling Constants
Randy S

Abstract This article explains how to construct an action for a model of quantum
gauge fields with gauged group (G1 × · · · × GK)/Γ, where each Gk is a compact
Lie group – either U(1) or a simple 1-connected Lie group – and Γ is a discrete
subgroup of the center of G1×· · ·×GK . The action may involve several independent
coupling constants, one for each factor Gk and one for each pairing of U(1) factors
(if the numerator has more than one U(1) factor). The factor Γ affects the set of
possible interaction terms, but it doesn’t affect the Lie algebra.

One of the motives for this article is the fact that the gauged group of the
Standard Model(s) of particle physics has the form (SU(3) × SU(2) × U(1))/Γ.
More than one choice for Γ is consistent with everything that is currently known
about the real world, but the most likely choice is a group with six elements for
which the resulting gauged group is not a product.
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1 Introduction

The action for a model with gauge fields is a sum of two types of term: terms
involving only the gauge fields, and terms that also involve other fields (including
the gauge fields). These will be called Yang-Mills terms and interaction terms,
respectively.1 When spacetime is treated as a lattice so that the quantum model
can be constructed nonperturbatively, the standard form for the Yang-Mills terms
is called the Wilson action.2

Any compact connected Lie group has the form3,4

G =
G1 ×G2 × · · · ×GK

Γ
(1)

where Γ is a discrete subgroup of the center5 of G1×G2×· · ·×GK and each factor
Gk is either U(1) or a simple 1-connected Lie group.6 Article 89053 constructed an
example of a model with gauge fields for a generic compact Lie group G. Before the
continuum limit is taken, the action used in that construction has one continuously
adjustable dimensionless7 parameter, namely the overall coefficient of the action,
regardless of the number K of factors in (1). This article introduces a more general
family of models that have the same gauged group (1) but whose action uses at
least8 K independent continuously adjustable dimensionless parameters, one for
each factor Gk.

1This differs from the usual meaning of interaction term in perturbation theory, where it refers to any term of
higher-than-quadratic order in the fields.

2Article 89053
3Article 92035
4Section 5 will review the concept of a quotient group A/B, where B is a normal subgroup of A.
5Section 5 will define center.
6Section 4 will review the definition of 1-connected, and section 5 will review the definition of simple.
7Taking a continuum limit converts this parameter to a scale, a phenomenon called dimensional transmutation

(article 07611).
8The number of independent parameters can be higher if two or more of the factors Gk are isomorphic to U(1).
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2 Motivation: the Standard Model(s)

The gauged group of the Standard Model(s) of particle physics is9

SU(3)× SU(2)× U(1)

Γ

where the SU(3) gauge field mediates the strong interaction between quarks, and
different mixtures of the SU(2) and U(1) gauge fields mediate the electromagnetic
and weak nuclear interactions.10 A particular six-element subgroup of the center of
the numerator is the most conservative choice11,12 for the denominator Γ because
this choice limits the set of possible interaction terms as much as possible without
compromising the model’s consistency with experiment.13 Other experimentally
allowed choices for Γ may also be considered, though care must be taken to check
for global anomalies that would make the model mathematically inconsistent in
subtle ways that small-coupling expansions do not notice.14

One of the goals of a Grand Unified Theory (GUT) is to derive the values of all
of the gauge-field coupling constants from a single coupling constant for a larger
gauged group. The challenge is then is to find the right combination of interaction
terms that makes the GUT consistent with experiment at accessible energies. The
purpose of this article is to help explain why a model defined on a spacetime lattice
can have multiple running couplings,15 including one for each of the factors Gk in
(1), even if the action has only a single Wilson term for the whole gauged group
(1). The basic message is that even without considering running couplings, we can
define a model whose action has a separate Wilson term for each of the factors Gk,
with independent coefficients, without changing the fact that the full gauged group
is still (1) and without changing the model’s properties in the continuum limit.

9Davighi et al (2020), equation (4.2); Lohitsiri (2020), equation (3.30); Tong (2017)
10These mixtures are selected by interactions between the gauge fields and the Higgs field(s).
11Harlow and Ooguri (2021), footnotes 28 and 58 in sections 2.4 and 3.4 (in the preprint version)
12This choice is also motivated by Grand Unified Theories (Tong (2018), text below equation (2.82)).
13Making Γ larger makes the set of allowed interaction terms smaller.
14Davighi et al (2020), section 4.6; Lohitsiri (2020), section 3.4
15Article 07611
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3 Preview and perspective

The Wilson action uses a faithful matrix representation of the gauged group G.
Interaction terms and observables may use representations of the gauged group G
that are not necessarily faithful.

The continuum limit of the Wilson action “forgets” about the denominator Γ
in (1).16 More precisely, sections 13-15 will show that under mild conditions on the
factors Gk,

17 the continuum limit of the Wilson action becomes a sum of Yang-Mills
terms, one for each factor Gk in the numerator of (1):

SW (G, q)→
∑
k

SYM(Gk, qk) (continuum limit), (2)

where SW (G, q) is the Wilson action for a gauge field when the gauged group is
G and the coupling constant is q, and SYM(G, q) denotes the continuum limit of
SW (G, q). The denominator Γ of (1) still affects the set of allowed interaction
terms,18,19 but it doesn’t affect the continuum limit of the Yang-Mills terms except
through relationship between the constants qk and q.

This relationship between the constants qk and q constrains the properties of
the model’s continuum limit. The “constants” qk may flow at different rates under

16Beware that the continuum limit of a lattice model is not necessarily fully determined by the continuum limit of
its action. The denominator Γ in (1) affects the topology of G, so it can affect the set of possible principal G-bundles
when the base space (spacetime) is topologically nontrivial. Roughly, making Γ larger make the topology of G more
complicated and so can allow a larger variety of principle G-bundles. The path integral in continuous spacetime – if
we knew how to define it – would include a sum over bundles (Aharony et al (2013), section 1.1, property 3), so Γ
could affect the model’s properties on topologically nontrivial spacetimes. Teper (2018) didn’t find any differences
between pure Yang-Mills models (in which the gauge field is the only field) whose gauged groups differ only in the
denominator Γ, but that analysis only considered a limited class of observables.

17One of the conditions is that no more than one U(1) factor is present. If two or more U(1) factors are present,
then some choices of the denominator Γ can lead to kinetic mixing terms (section 17).

18Interaction terms are not shown in this article.
19Each interaction term uses a representation of G/Γ. The set of representations of G/Γ is a subset of the set of

representations of G (section 6). Making Γ bigger makes the subset smaller.
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the renormalization group,20,21 making the relationship between them less apparent
at resolutions much coarser than the lattice scale, but the constraint is still there.

Section 16 will describe a lattice action that treats the coupling constants qk as
independent parameters instead of using (2) to derive their values from the value
of a single governing constant q.22 The gauged group is still (1), even though we
now have K independent coupling constants instead of only one. Here’s an outline
of the rest of the article:

• Sections 4-11 review some definitions and general results about Lie groups,
Lie algebras, and their representations.

• Section 12 reviews the Wilson action, and sections 13-15 derive the result (2).

• Section 16 explains how to modify the lattice action so that it has the same
continuum limit (2) but allows the coupling constants qk to be treated as
independent parameters.

• Section 17 addresses an exception to (2), namely when the numerator of (1)
has two or more U(1) factors.

• Sections 18-28 use several examples of how to construct faithful matrix rep-
resentations of a group of the form (1) starting with faithful representations
of the factors Gk.

20Article 10142 introduces the idea of renormalization group flows in the simpler context of scalar fields, and article
07611 quantifies the flow in the context of a Yang-Mills model with a single coupling constant.

21The rates depend both on the gauged group and on the interaction terms.
22Section 1 in Baez and Huerta (2010) asserts “When G is the product of simple factors, there is one coupling

constant for each factor of G.” This article gives more insight about that assertion.
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4 Notation and conventions

• A group is called trivial if it has only one element (the identity element).

• A topological space (like a Lie group) is called 1-connected if it is both
connected23 and simply-connected.24,25

• ' denotes isomorphism of Lie groups or Lie algebras.26

• Z(G) is the center of the group G.26

• Zn is the cyclic group with n elements.

• ρ is a matrix representation of a group G, and ρ(g) is the matrix representing
the element g ∈ G.27

• ρ∗ is the representation dual to ρ.28

• 1 is the identity matrix, used as the identity element of a matrix group.

• MT is the transpose of a matrix M .

• M † is the hermitian conjugate of a matrix M (the complex conjugate of MT ).

• 〈M〉 denotes the trace of a matrix M .

• L(G) is the Lie algebra corresponding to a Lie group G.29,30

23Connected means that any pair of points may be continuously morphed to a single point.
24Simply-connected means that any closed loop may be continuously morphed to a single point.
25Article 61813
26Section 5
27Section 6
28Section 18
29Section 9
30This notation allows referring to the Lie algebra of a group that hasn’t been given a single-letter name of its

own. (Contrast this with the common convention that writes g for the Lie algebra of G.) Example: the Lie algebra
of (G1 ×G2)/Γ is L((G1 ×G2)/Γ).
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5 Compact Lie groups

Article 92035 reviews the definition of compact Lie group. Here’s a quick review
of other concepts that are useful in this context:

• The center of a group G, denoted Z(G), consists of all elements of G that
commute with every element of G.

• If G and H are groups, then a homomorphism ρ from G to H is a map
from G to H that satisfies ρ(a)ρ(b) = ρ(ab) for all a, b ∈ G.31 The kernel of
ρ is the set of elements of G for which ρ(g) is the identity element of H.

• Two groups G and H are isomorphic if homomorphisms G→ H and H → G
exist for which the compositions G → H → G and H → G → H are both
the identity map.31

• A subgroup of G is called a normal subgroup if it is the kernel of some
homomorphism.31 A Lie group G is called simple if it doesn’t have any
nontrivial connected normal subgroups other than G itself.32

• A Lie group Γ is called discrete if each element of Γ has a neighborhood that
doesn’t contain any other elements. If G is a connected matrix Lie group and
Γ is a discrete normal subgroup of G, then Γ is in the center of G.33

• If G is a group and Γ is a normal subgroup, then the quotient group G/Γ
is “G modulo Γ.” Article 29682 gives the precise definition.

• A Lie group G is called semisimple if it has the form (1) in which all the
factors Gk are simple and 1-connected.32 If G is semisimple, then the center
of G/Z(G) is trivial.34

31Article 29682
32Article 92035
33Hall (2015), chapter 1, exercise 11
34Knapp (2023), proposition 6.30
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6 Representations of compact Lie groups

In this article, a representation of a group G means a finite-dimensional matrix
representation over C – a homomorphism from G to a matrix group with complex
numbers as matrix elements. To avoid misunderstanding, the qualifiers finite-
dimensional or matrix are still included when quoting some theorems, even though
those qualifiers are implied throughout this article.

• Two representations ρ and ρ′ of G are called equivalent if a matrix M exists
for which ρ′(g) = M−1ρ(g)M for all g ∈ G.35,36

• The kernel of a representation ρ of G consists of all elements g ∈ G for which
ρ(g) = 1.

• A representation ρ of G is called faithful if the condition g 6= g′ implies
ρ(g) 6= ρ(g′).37

• Every compact Lie group G has a faithful finite-dimensional representation.38

• A representation ρ ofG is called unitary if ρ(g−1) = (ρ(g))† for every g ∈ G.39

• Every finite-dimensional representation (over C) of a compact Lie group is
equivalent to a unitary representation.40 In this article, all representations
are assumed to be unitary.

• If G is a group and Γ is a normal subgroup, then any representation ρ of G/Γ
(homomorphism from G/Γ to a matrix group) gives a representation of G by
composing it with the homomorphism G→ G/Γ, so the set of representations
of G/Γ is a subset of the set of representations of G.

35Kirillov and Kirillov (2005), section 4.1
36The text below definition 4.3 in Hall (2015) calls equivalent representations isomorphic. I’m using the name

equivalent to help avoid misunderstanding, Two Lie algebras are not necessarily isomorphic to each other even if
they have some representations that are equivalent to each other (section 9).

37Hall (2015), section 4.1
38Knapp (2023), corollary 4.22
39Hall (2015), definition 4.7
40Kirillov and Kirillov (2005), theorem 11
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7 Direct product, direct sum, and tensor product

The direct product of two groups A and B is denoted A × B. Each element of
A × B is a pair (a, b) with a ∈ A and b ∈ B, and the group operation is defined
by (a, b)(a′, b′) = (aa′, bb′). This definition does not rely on the concept of a matrix
representation.

The direct sum and tensor product are two different ways of combining repre-
sentations. Both may be defined by how they combine the vector spaces on which
the representations act.41 Use this notation:

• A is a group, and ρA is a representation of A using matrixes42 that act on43

an NA-dimensional vector space VA over C.

• B is another group, and ρB is a representation of B using matrixes that act
on an NB-dimensional vector space VB over C.

The direct sum of the vector spaces, denoted VA⊕VB, is defined by thinking of
VA and VB as linearly independent subspaces of an (NA +NB)-dimensional vector
space. The direct sum ρ ≡ ρA ⊕ ρB of the representations ρA and ρB is the
representation of A×B defined by44

ρ(a, b)(VA ⊕ VB) =
(
ρA(a)VA

)
⊕
(
ρB(b)VB

)
(3)

for all (a, b) ∈ A × B. We can use a basis in which the first NA components of a
vector in VA⊕VB are the components of a vector in VA, and the last NB components
of a vector in VA ⊕ VB are the components of a vector in VB. In this basis, ρ(a, b)

41Article 28539 reviewed definitions of the direct sum and tensor product of two abelian groups. The definitions
in that article are consistent with the definitions in this article if the roles of the abelian groups in that article are
compared to the roles of the vector spaces in this article. (A vector space is, among other things, an abelian group.)
However, here we are defining the direct sum and tensor product of two representations (in terms of the direct sum
and tensor product of the vector spaces on which they act), not of the groups they represent.

42I’m writing the plural of matrix as matrixes instead of matrices to remind students that matrice is not a word.
43Saying that a matrix M acts on a vector space V means that it describes a linear transformation of V .
44Hall (2015), definition 4.12
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is the block-diagonal matrix whose diagonal blocks are ρA(a) and ρB(b). If ρA and
ρB are faithful representations of A and B, then ρA⊕ρB is a faithful representation
of A×B.45

The tensor product of VA and VB, denoted VA ⊗ VB, can be defined as the
(NANB)-dimensional vector space in which the components of a vector v ∈ VA⊗VB
are v(j,k) = αjβk with α ∈ VA and β ∈ VB. In this description, the pair (j, k) of
integers is regarded as a single index for the components of v. This single index
ranges over NANB different values, because j and k range over NA and NB different
values, respectively. In this basis, the tensor product of a matrix MA acting on
VA with a matrix MB acting on VB is the matrix M = MA ⊗MB whose action on
VA ⊗ VB can be defined componentwise by46[

M(VA ⊗ VB)
]

(j,k)
=
[
MAVA

]
j

[
MBVB

]
k
. (4)

The tensor product ρ ≡ ρA ⊗ ρB of the representations ρA and ρB is the repre-
sentation of A×B defined by47

ρ(a, b) = ρA(a)⊗ ρB(b) (5)

for all (a, b) ∈ A×B, where the right-hand side is a matrix defined by (4). Even if
ρA and ρB are faithful representations of A and B, ρA⊗ ρB might not be a faithful
representation of A × B, because (zMA) ⊗ MB = MA ⊗ (zMB) for all complex
numbers z.48

We can also use the direct sum or tensor product to combine two represen-
tations of a single group. If ρA and ρB are both representations of G, then the
representations ρA⊕ ρB and ρA⊗ ρB of G are defined by ρ(g) ≡ ρA(g)⊕ ρB(g) and
ρ(g) ≡ ρA(g)⊗ ρB(g),49 respectively.

45This should be clear from the block-diagonal description.
46A basis-independent definition is given in Hall (2015), definition 4.13
47Hall (2015), definition 4.17
48This property is sometimes indicated by writing ⊗C, where the subscript specifies the type of number that may

be passed from one side of the tensor product to the other. This allows distinguishing between ⊗C, ⊗R, and ⊗Z,
which can be useful in some contexts. In this article, ⊗ always means ⊗C.

49Hall (2015), definition 4.20
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8 General form of a finite-dimensional representation

Let ρ be a representation of G acting on a vector space V . The representation
ρ is called irreducible if V does not have any subspace (other than the zero-
dimensional subspace and V itself) that is self-contained under the action of ρ.50 A
representation is called completely reducible if it may be written as a direct sum
of a finite number of irreducible representations.51 If G is a compact matrix Lie
group, then every finite-dimensional representation of G is completely reducible.52

If ρ is an irreducible complex representation of a matrix Lie group G and g is
in the center of G, then ρ(g) is proportional to the identity matrix.53

If ρ1 and ρ2 are finite-dimensional irreducible representations of G1 and G2, then
ρ1 ⊗ ρ2 is an irreducible representation of G1 × G2, and every finite-dimensional
irreducible representation of G1×G2 has this form.54 This generalizes in the obvious
way to direct products with any finite number of factors.

If G is a direct product of compact matrix Lie groups Gk,

G = G1 × · · · ×GK , (6)

then G is also a compact matrix Lie group, so all finite-dimensional representations
of G are completely reducible. Every irreducible representation of (6) is a tensor
product of irreducible representations of its factors Gk, so every finite-dimensional
representation of (6) may be expressed as a direct sum of tensor products of repre-
sentations of its factors Gk. Every representation of G/Γ is also a representation of
G,55 so every representation of G/Γ may also be expressed as a direct sum of tensor
products of representations of the factors Gk in the numerator. Sections 19-28 will
describe several examples.

50Hall (2015), definition 4.2
51Hall (2015), definition 4.23
52Hall (2015), Theorem 4.28; Knapp (2023), theorem 9.4
53Hall (2015), Corollary 4.30
54Sepanski (2007), theorem 3.9 (for compact Lie groups); Morel (2019), theorem II.2.1 (the proof is given only for

finite groups, but the theorem is stated without that restriction)
55Section 6
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9 The Lie algebra of a Lie group

Every Lie group has a corresponding Lie algebra. The Lie algebra L(G) of a
matrix group G can be defined as the set of all matrixes X for which esX is in G
for all real numbers s,56 and then the Lie bracket of X, Y ∈ L(G) can be defined
as the commutator [X, Y ].57

If G is connected, then L(G) generates G,58 but an abstract Lie algebra doesn’t
generate a Lie group. In other words: every connected Lie group G is generated by
its Lie algebra L(G),59 but two connected Lie groups may be non-isomorphic even
if their Lie algebras are isomorphic. In particular, if Γ is a discrete subgroup of the
center of G, then60

L(G/Γ) ' L(G), (7)

even though G/Γ is typically not isomorphic to G.
If G is a matrix Lie group, then every representation of G gives a representa-

tion of L(G),61 but different faithful matrix representations of L(G) can generate
groups that are not isomorphic to each other. Example: let ρ3 and ρ2 be faithful
representations of the matrix groups SO(3) and SU(2), respectively. Then ρ3 and
ρ2 give faithful representations of L(SO(3)) and L(SU(2)), respectively. Equation
(7) implies L(SO(3)) ' L(SU(2)) because SO(3) ' SU(2)/Z2, so ρ3 and ρ2 are
two different faithful representations of the same abstract Lie algebra, even though
the groups they generate (SO(3) and SU(2)) are not isomorphic to each other.

56Hall (2015), definition 3.18 or 5.18
57These aren’t the general definitions, but they’re sufficient for matrix Lie groups/algebras.
58This means that every element of the group G may be written as a product of elements of the form eX with

X ∈ L(G) (Hall (2015), corollary 3.47).
59Fulton and Harris (1991), section 8.3, page 116
60Fulton and Harris (1991), section 8.3, page 119
61Partial converse: if G is a connected and simply-connected matrix Lie group, then every representation of L(G)

comes from a representation of G (Hall (2015), theorem 5.6, previewed at the beginning of section 4.7).
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10 Faithful representations of a Lie algebra

Consider a unitary matrix representation of a Lie group G. If X is a matrix in the
corresponding representation of L(G), then X is antihermitian: X† = −X.62

Now let T1, T2, ... be linearly independent elements of L(G) such that every
element of L(G) is a linear combination of the Tas with real numbers as coeffi-
cients. If ρ is a faithful unitary matrix representation of L(G), then the matrixes
ρ(T1), ρ(T2), ... are also linearly independent over R (the field of real numbers),
and we can choose the basis T1, T2, ... so that

〈ρ(Ta)ρ(Tb)〉 =

{
−ν if a = b

0 otherwise
(8)

for some positive real constant ν, where 〈· · · 〉 denotes the trace of a matrix.63

If G is a compact semisimple Lie group, then every element X ∈ L(G) may be
written as X = [X1, X2] with X1, X2 ∈ L(G).64,65 This implies that in any faithful
matrix representation of L(G), every element of L(G) is represented by a traceless
matrix, because the trace of a commutator is zero. This applies to all the factors
Gk in the numerator of (1) with the exception of the U(1) factors.

62This follows from the fact that if s is a real number, then esX is a matrix representing an element of G, and this
matrix must be unitary.

63Choosing the basis so that the trace is zero for a 6= b is possible because the matrix M with components
Mab ≡ 〈ρ(Ta)ρ(Tb)〉 is symmetric (because the trace is cyclic) and real, so it can be diagonalized by an orthogonal
transformation. The constant ν must be positive because

〈
ρ(Ta)†ρ(Ta)

〉
is positive and ρ(Ta)† = −ρ(Ta).

64Malkoun and Nahlus (2017), theorem 1.1
65This is the Lie algebra counterpart of Gotô’s theorem for compact connected semisimple lie groups (Gotô

(1949); Kramer (2023), text above theorem 1).
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11 The adjoint representation

Every matrix Lie group has a representation called the adjoint representation.
To define it, first define an action of G on its Lie algebra L(G) by

ρ(g) : X 7→ gXg−1 for all X ∈ L(G) and g ∈ G. (9)

If we think of L(G) as a vector space on which ρ(g) acts, then ρ is a representation
of G. This is the adjoint representation.66

To make this more explicit, let X1, X2, ... be a basis for L(G) matrixes satisfying
〈XjXk〉 = −δjk, like in section 10. Every X ∈ L(G) is a linear combination of these
basis elements with coefficients in R. The definition (9) says that ρ(g) sends Xj to
gXjg

−1. This must be a linear combination of these basis elements, so

gXjg
−1 =

∑
j
Mjk(g)Xk (10)

with coefficients Mjk(g) ∈ R. We can think of L(G) as a vector space with basis
vectors Xj, and we can represent Xj as the vector whose kth component is δjk.
Then the effect of (9) is the same as multiplying these vectors by the transpose
MT (g) of the matrix M(g) with components Mjk(g), so ρ(g) = MT (g).67

The adjoint representation is a faithful representation of G/Z(G).68 Combine
this with (7) to deduce that the adjoint representation of G gives a faithful repre-
sentation of L(G).

66Hall (2015), definitions 3.32 and 4.9
67If g is represented by a unitary matrix, then ρ(g) is also unitary. Proof: δjk = −〈XjXk〉 = −

〈
(gXjg

†)(gXkg
†)
〉

=
−
∑

j′k′ 〈Mjj′Xj′Mkk′Xk′〉 =
∑

`Mj`Mk`, so M is an orthogonal matrix. Its components are real, so M is unitary.
68Article 91563
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12 Overview of the derivation of (2)

Let ρ be a faithful matrix representation of a compact Lie group, and let N(ρ)
denote the trace of the identity matrix in this representation. The Wilson action is
a function of a set of G-valued variables, with one variable matrix u(ρ,2) for each
plaquette 2 in the lattice.69 The Wilson action is

SW (ρ, q) =
β

2

∑
2

(
1− W (ρ,2)

N(ρ)

)
(11)

with β ∝ 1/q2 and
W (ρ,2) =

〈
u(ρ,2)

〉
.

The goal is to express the continuum limit of this action in terms of Yang-Mills
actions for the individual factors Gk in (1).

Every representation of (1) may also be expressed as a direct sum of tensor
products of representations of the factors Gk in the numerator.70 One of the steps
in section 15 uses the fact that for each factor Gk, the representations that occur in
that decomposition are all either trivial or faithful representations of the Lie algebra
of Gk. This is true because each non-U(1) factor Gk is assumed to be a simple Lie
group, which means it doesn’t have any connected normal subgroups. The kernel
of a representation must be a normal subgroup, so every nontrivial representation
of Gk must be a faithful representation of the Lie algebra of Gk.

Sections 13 and 14 decompose the Wilson action for a direct sum and a direct
product, respectively, and then section 15 takes the continuum limit. The result is
(2), plus possible cross-terms that only involve U(1) factors.

69These plaquette variables are not all independent of each other. They are special combinations of link variables,
and the link variables are all independent of each other (article 89053).

70Section 8
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13 Wilson action for a direct sum

Now suppose ρ = ρ(1) ⊕ ρ(2) ⊕ · · · , with a finite number of terms, and think of
each summand as a block in a basis where ρ is block-diagonal. This gives N(ρ) =∑

j N
(
ρ(j)
)

and

u(ρ,2) = u
(
ρ(1),2

)
⊕ u

(
ρ(2),2

)
⊕ · · · ⇒ W (ρ,2) =

∑
j

W
(
ρ(j),2

)
,

where the traces in N
(
ρ(j)
)

and W
(
ρ(j),2

)
are over the kth block of the direct

sum. Use these to get

SW (ρ, β) =
β

2

∑
2

N(ρ)−W (ρ,2)

N(ρ)

=
β

2

∑
2

∑
j

N
(
ρ(j)
)
−W

(
ρ(j),2

)
N(ρ)

=
∑
j

βj
2

∑
2

(
1−

W
(
ρ(j),2

)
N
(
ρ(j)
) )

(12)

with βj ≡ βN
(
ρ(j)
)
/N(ρ).
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14 Wilson action for a tensor product

Let ρ denote one of the terms ρ(j) in the direct sum in section 13, omitting the
superscript to reduce clutter. Suppose that ρ has the form

ρ = ρ1 ⊗ ρ2 ⊗ · · · (13)

with a finite number of factors, where each ρm is a representation of one of the
factors Gk in the numerator of (1). The correspondence between factors ρm in (13)
and factors Gk in (1) does not need to be (and typically won’t be) one-to-one. The
trace of a tensor product is the product of the traces of the factors,71 so

W (ρ,2) =
∏
m

W (ρm,2) N(ρ) =
∏
m

N(ρm). (14)

71Hall (2015), lemma 12.17
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15 Continuum limit of the action

This section derives the continuum limit of the Wilson action for a finite-dimensional
faithful unitary representation of the gauged group (1), using the fact that any such
representation may be expressed as a direct sum of tensor products of representa-
tions of the factors Gk in the numerator of (1).72 Sections 13-14 already did the
first steps in the derivation. This section finishes it.

Consider one of the factors in the first of equations (14). Article 89053 derives
the result

W (ρm,2) =
〈
er(ρm,2)

〉
r(ρm,2) ≡ ε2F (ρm,2) +O(ε3), (15)

where ε is the distance between adjacent lattice sites and F (ρm,2) is an element
of the Lie algebra in the representation ρm. Expand the exponential er in powers
of r and substitute the resulting expression for W (ρm,2) into (14). This gives

W (ρ,2) = c+
∑
m

c′m

〈
r(ρm,2) +

1

2
r2(ρm2)

〉
+
∑
m<m′

c′′m,m′
〈
r(ρm,2)

〉〈
r(ρm′,2)

〉
+O(ε6)

where the constants c, c′m, c
′′
m,m′ are products of traces of the identity matrix. The

constant term c is canceled by the “1” in equation (12). The terms linear in r
cancel in the sum over plaquettes in (12) because r(ρm,2) + r(ρm,2rev) = 0 if 2rev

is the plaquette obtained from 2 by reversing the orientation.73 Terms of order ε5

and higher go to zero in the continuum limit of the action.73 This leaves

W (ρ,2) =
ε4

2

∑
m

c′m
〈
F 2(ρm,2)

〉
+ ε4

∑
m<m′

c′′m,m′
〈
F (ρm,2)

〉〈
F (ρm′,2)

〉
+ (terms that will cancel or go to zero).

72Section 8
73Article 89053
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If ρm is a nontrivial representation of one of the non-U(1) factors in the numerator
of the gauged group (1), then the trace of F (ρm,2) is zero,74 so the only surviving
cross-terms are those involving two U(1) factors. If ρm is a trivial representation,
then the trace is N(ρm). Altogether, after expressing the coefficients c′m in terms
of traces of identity matrixes, this leaves

∑
2

(
1− W (ρ,2)

N(ρ)

)
= −ε

4

2

(∑
2

∑
m

〈
F 2(ρm,2)

〉
N(ρm)

+ (U(1) cross-terms)

)
+O(ε5).

(16)
Use this in (12) to conclude that continuum limit of the Wilson action for a gauged
group of the form (1) is a linear combination of Yang-Mills terms, each proportional
to the continuum limit of

∑
2

〈
F 2(ρm,2)

〉
for some representation ρm of (1), plus

possible cross-terms that only involve U(1) factors.75

To finish deriving (2), consider any factor Gk in the numerator of (1). Equation
(16) may have different terms corresponding to different representations ρm of the
same factor Gk. All these terms are proportional to each other because:

• Each depends only on a representation ρm of Lie algebra of Gk, regardless of
what part of the center of Gk occurs in the denominator of (1).76

• Each representation ρm is either trivial or faithful as a representation of the
Lie algebra of Gk.

77

• Equation (8) shows that up to an overall constant factor,
〈
F 2
ab

〉
is independent

of which faithful representation of the Lie algebra is used.78

Since they’re all proportional to each other, we can combine all the Yang-Mills
terms corresponding to any given factor Gk in (1). This gives (2), plus possible
cross-terms between different U(1) factors in (1).

74Section 9
75Section 17
76Equation (7) says that the denominator doesn’t affect the Lie algebra if Gk is connected.
77Section 12
78We might as well take it to be the adjoint representation (section 11).
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16 Allowing multiple coupling constants

The derivation in the preceding sections produced an action of the form (2) (plus
possible U(1) cross-terms) in which all of the coupling constants qk are proportional
to the coupling constant q in the original action 11.79 If we’re not trying to build
a GUT, though, then we might want to treat the coupling constants qk as being
independent of each other instead.80 That raises a question: how can we modify
the lattice model so that it also treats them as independent of each other? We can
do this by replacing the Wilson action for the full group G with a sum of Wilson
actions for quotients that each involve only one of the factors Gk:

SW (G, q)→
∑

k
SW (Gk/Γk, qk) + (U(1) cross-terms). (17)

Each denominator Γk is the smallest subgroup of the center of Gk that contains all
the elements of Gk that contribute to Γ, the denominator in (1). The denomina-
tors Γk in (17) ensure that the right-hand side uses only representations that are
induced by the original faithful representation used on the left-hand side.81 The
denominators Γk don’t determine the denominator Γ of the full group (1), but the
denominator Γ of the full group still affects the set of allowed interaction terms
(which are not being written in this article).

Even if we use the values of qk that come from the derivation in section 15 and
even if cross-terms between different U(1) factors are absent, the quantum models
defined by the left- and right-hand sides of (17) can have different properties on
a finite lattice,82 but the fact that the actions have the same continuum limit is
consistent with the assumption that the corresponding quantum models become
indistinguishable in appropriate continuum limits.83,84

79The Yang-Mills term for Gk is ∝ 1/q2
k.

80Section 3
81This works because if G′ ≡ G1 × · · · × GK and Γ′ ≡ Γ1 × · · · × Γk, then G1

Γ1
× · · · × GK

ΓK
= G′

Γ′ = G′/Γ
Γ′/Γ = G

Γ′/Γ

(article 29682), so the set of representations of G′

Γ′ is contained in the set of representations of G (section 6).
82Creutz and Moriarty (1982)
83I’m not aware of any proof or systematic numerical studies of this assumption.
84I avoided saying “in the continuum limit” because continuum limits could be taken in different ways when the
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17 U(1) cross-terms

Section 15 showed that the Wilson action for the full gauged group (1) reduces
to a sum of Yang-Mills actions for the individual factors Gk in the numerator of
(1) plus possible cross-terms between different U(1) factors in the numerator of
(1).85 The coefficients of Yang-Mills terms for the individual factors Gk and the
U(1) cross-terms may all flow at different rates under the renormalization group,86

depending on what interaction terms (terms describing interactions of other fields
with the gauge fields) are present in the action. In particular, even if we start with
a lattice model whose action has no such cross-terms, cross-terms between different
U(1) factors will typically arise in the low-resolution effective model generated by
the renormalization group flow. This is called kinetic mixing. Such cross-terms
commonly arise in low-energy effective models derived from GUTs or from string
theory.87 If we’re not trying to build a GUT, then we can treat the coefficients of
all of these terms – including the U(1) cross-terms – as independent parameters,
just like in section 16.

lattice action has multiple independent parameters. De Cesare et al (2021) considers a lattice action involving two
Wilson terms using different representations of a single group and explores the possibility of obtaining different
continuum limits (in five-dimensional spacetime) depending on how their coefficients are related to each other in the
limit. Florio et al (2021) lists some additional references. Emel’yanov and Petrovskĭi (1983) is another example that
explores properties of a model whose lattice action involves multiple representations of the gauged group.

85All nontrivial representations of U(1) are faithful representations of the Lie algebra, so cross-terms between
different representations of the same U(1) factor are proportional to non-cross-terms. Such terms don’t need to be
considered separately if the coefficients of all non-cross-terms are being treated as independent parameters anyway.

86Section 3
87Jaeckel and Ringwald (2010); Luo and Xiao (2003); Babu et al (1998)
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18 Introduction to the examples

Sections 19-26 give examples of faithful representations of various groups of the
form (1). This section reviews a few more tools that can be useful for this purpose.

Every irreducible unitary representation of a compact group is finite dimen-
sional.88 If ρ1 and ρ2 are two irreducible representations of G, then ρ1 ⊗ ρ2 is
typically not irreducible89 as a representation of G.90

If ρ is a representation of G, then the dual representation ρ∗ is defined by91

ρ∗(g) ≡ ρ(g−1)T for all g ∈ G. If the representation is unitary, then the dual
representation is clearly the same as the complex conjugate of ρ, so the notation
ρ∗ may be interpreted either way when the representation is unitary.

In the following examples, each factor in the numerator of (1) is either SU(·)
or U(1). By definition, SU(n) is the matrix group in which each matrix M has
size n×n and satisfies M−1 = M † and detM = 1. The center Z(SU(n)) of SU(n)
consists of multiples of the identity matrix, where the coefficient z ranges over all
complex numbers satisfying zn = 1, so Z(SU(n)) is isomorphic to Zn.92 The center
of the quotient group SU(n)/Z(SU(n)) is trivial.93 Article 91563 reviews some
useful facts about the irreducible representations of SU(n),94 including the number
of dimensions of each irreducible representation.95

88Knapp (2023), Corollary 9.5
89Hall (2015), text below definition 4.20
90The study of how tensor-product representations of G decompose into irreducible representations of G is some-

times called Clebsch–Gordan theory (Hall (2015), text below definition 4.20). Chapter 9 in Knapp (2023) treats
this as an application of branching theorems that address how irreducible representations of a group G decompose
into irreducible representations of a subgroup H ⊂ G.

91Hall (2015), definition 4.21 (for matrix Lie groups); Fulton and Harris (1991), section 1.1 (for finite groups)
92SU(n) has other subgroups that are also isomorphic to Zn. One such subgroup consists of matrixes of the form

diag(z, z∗, 1, 1, 1, ...) with zn = 1.
93Article 92035
94Every unitary representation of SU(n) is a direct sum of irreducible representations.
95This information can sometimes be used to show that two quotients G/Γ are not isomorphic to each other even

if their denominators Γ are isomorphic to each other, like in section 21.
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19 Example: SU(n)/center

In this section, Z will be used as an abbreviation for the center of SU(n), which
is isomorphic to Zn. Some representations of SU(n) are also representations of
SU(n)/Z, and some of those are faithful representations of SU(n)/Z. This section
explains how to construct one of those faithful representations of SU(n)/Z.

Let ρ be the defining representation of SU(n) – the one that was used to define
SU(n) in section 18. This a faithful and irreducible representation of SU(n). Let ρ∗

denote the dual representation. The tensor product ρ⊗ ρ∗ is also a representation
of SU(n),96 but it is not faithful (or irreducible). It is not faithful because in the
representation ρ, elements of the center of SU(n) are proportional to the identity
matrix,97 and the proportionality factor (a complex number satisfying zn = 1) can
be passed through the tensor product from one side to the other:

(zρ)∗ ⊗ (zρ) = (z∗ρ∗)⊗ (zρ) = ρ∗ ⊗ (z∗zρ) = ρ∗ ⊗ ρ

for all complex numbers z satisfying zn = 1 (which implies z∗z = 1).
The same identity implies that ρ∗ ⊗ ρ is also a representation of SU(n)/Z. It’s

not irreducible,98 but it is a faithful representation of SU(n)/Z because elements
of the center of SU(n) are the only factors that can be passed from one side of the
tensor product to the other.99

96In this representation, the matrix that represents g ∈ SU(n) is ρ(g)⊗ ρ∗(g).
97This is true for any irreducible representation of a matrix Lie group (section 8).
98It’s the direct sum of the trivial representation and the (n2 − 1)-dimensional adjoint representation (Eichmann

(2020), appendix A.3).
99The adjoint representation is faithful for SU(n)/Z but not for SU(n).
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20 Example: SU(6)/Z3

The previous section considered the quotient of SU(n) by its full center. If the
integer n is not prime, then we can also consider quotients of SU(n) by a proper
subgroup of its center, like SU(6)/Z3, where Z3 is understood as an abbreviation
for the subgroup consisting of multiples of the identity matrix with a coefficient z
satisfying z3 = 1.

If ρ is the defining (hence faithful) representation of SU(6), then ρ ⊗ ρ ⊗ ρ
a non-faithful representation of SU(6),100 but it is faithful as a representation of
SU(6)/Z3.

101 The intuition is similar to the intuition used in section 19.

100In this representation, the matrix that represents g ∈ SU(6) is ρ(g)⊗ ρ(g)⊗ ρ(g).
101It’s not irreducible, but that’s not required here.
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21 Example: (SU(2)× SU(2))/Z2

This section constructs faithful representations of two groups of the form

SU(2)× SU(2)

Γ
, (18)

namely the groups resulting from these two choices for the denominator:102

Γ =
{

(1, 1), (−1, 1)
}

(19)

Γ =
{

(1, 1), (−1,−1)
}
. (20)

Both of these Γs are subgroups of SU(2)× SU(2), and both are isomorphic to Z2.
First consider the case (19). With this Γ, the group (18) is the same as

SU(2)

Z2
× SU(2) ' SO(3)× SU(2), (21)

where Z2 denotes the center of SU(2). Section 19 showed how to construct a faithful
representation of SU(2)/Z2. If ρ3 and ρ2 are faithful representations of SU(2)/Z2

and SU(2), respectively, then

ρsum(g, g′) ≡ ρ3(g)⊕ ρ2(g
′) (22)

defines a faithful representation ρsum of the quotient group (21). This is faithful
because (21) is a direct product (section 7). Another faithful representation ρprod

of the same group (21) is defined by

ρprod(g, g′) ≡ ρ3(g)⊗ ρ2(g
′). (23)

This is faithful because the center of SU(2)/Z2 is trivial, so any scalar factor z 6= 1
can be unambiguously associated with the second factor in (21).

102“1” denotes the identity matrix of whatever size is appropriate for the context (section 4).
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Now consider the case (20). With this Γ, the group (18) is103

SU(2)× SU(2)

Γ
' SO(4). (24)

If ρ2 is a faithful representation of SU(2), then

ρ(g, g′) ≡ ρ2(g)⊗ ρ2(g
′) (25)

defines a faithful representation ρ of the quotient group (24). The intuition is
similar to the intuition used in section 19.

The two quotient groups (21) and (24) both have the form (18) with Γ ' Z2,
and they are homeomorphic to each other as topological spaces,103 but this doesn’t
imply that they are isomorphic to each other as Lie groups. The smallest faithful
representations of SO(3) and SU(2) are 3- and 2-dimensional, respectively. Using
these as ρ3 and ρ2, the right-hand side of the isomorphism (21) shows that the
representations (22) and (23) are 5-dimensional and 6-dimensional, respectively,104

and the right-hand side of the isomorphism (24) shows that the representation
(25) is 4-dimensional. The representations (22) and (25) are presumably105 the
smallest faithful representations of the quotient groups (21) and (24), respectively.
Two groups whose smallest faithful representations have different sizes cannot be
isomorphic to each other.

103Article 92035
104As representations of the group (21), (23) is irreducible and (22) is not. Both are faithful.
105I don’t have a proof, but it seems clear intuitively.
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22 Example: (SU(n)× SU(n))/Zn
This section constructs faithful representations of two groups of the form

SU(n)× SU(n)

Γ
, (26)

namely the groups resulting from these choices for the denominator:

Γ =
{

(z∗, z) | zn = 1
}

(27)

Γ =
{

(z, z) | zn = 1
}
. (28)

Each of these Γs is isomorphic to Zn. If ρn is the defining representation of SU(n)
and ρ∗n is its dual, then the representations ρ and ρ̃ defined by

ρ(g, g′) ≡ ρn(g)⊗ ρn(g′)
ρ̃(g, g′) ≡ ρn(g)⊗ ρ∗n(g′)

are faithful representations of the groups (26) with (27) and (28) in the denomina-
tor, respectively.

When n = 2, the two choices for Γ shown above are equal to each other. This
is consistent with the fact that the defining representation ρ2 of SU(2) and its dual
ρ∗2 are equivalent to each other. To show that they’re equivalent, choose a basis in
which ρ2 consists of matrixes of the form(

a b
−b∗ a∗

)
where a, b are complex numbers with |a|2 + |b|2 = 1. Then ρ∗2 = Y −1ρ2Y with

Y =

(
0 1
−1 0

)
.
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23 Example: (SU(2)× U(1))/Z2

This section constructs faithful representations of three groups of the form

SU(2)× U(1)

Γ
, (29)

namely the groups resulting from these choices for the denominator:106

Γ =
{

(1, 1), (−1, 1)
}

Γ =
{

(1, 1), (1,−1)
}

Γ =
{

(1, 1), (−1,−1)
}
.

All three of these Γs are isomorphic to Z2. The first two choices for Γ give

SU(2)

Z2
× U(1) ' SO(3)× U(1) (30)

SU(2)× U(1)

Z2
' SU(2)× U(1), (31)

respectively. These are both product groups, so we can get a faithful representation
of each one by taking the direct sum of faithful representations of the factors
(section 7). The third choice for Γ gives107

SU(2)× U(1)

Γ
' U(2). (32)

If ρ2 and ρ1 are faithful representations of SU(2) and U(1), then ρ2 ⊗ ρ1 is a
representation of (32) because it doesn’t distinguish between (1, 1) and (−1,−1),
and it’s faithful because those are the only elements of the group SU(2) × U(1)
that it maps to the identity.108

106With these three choices for Γ, the corresponding three quotient groups (30), (31), and (32) are all non-isomorphic.
The groups (30) and (31) cannot be isomorphic to each other because their centers have different topologies (namely
S1 and Z2 × S1, respectively). Neither (30) nor (31) has any 2-dimensional faithful representations, but the group
(32) does, so neither of them is isomorphic to (32).

107Article 92035
108The defining representation of U(2) is faithful, of course, but describing it as ρ2 ⊗ ρ1 is useful for constructing

an action with different coupling constants for the two factors.
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24 Example: (SU(n)× U(1))/Zn
This section constructs faithful representations of four groups of the form

SU(n)× U(1)

Γ
, (33)

namely the groups resulting from these choices for the denominator:

Γ =
{

(z, 1) | zn = 1
}

(34)

Γ =
{

(1, z) | zn = 1
}

(35)

Γ =
{

(z∗, z) | zn = 1
}

(36)

Γ =
{

(z, z) | zn = 1
}
. (37)

Each of these Γs is isomorphic to Zn. The resulting quotient groups are109

SU(n)

Zn
× U(1) (38)

SU(n)× U(1)

Zn
' SU(n)× U(1) (39)

SU(n)× U(1){
(z∗, z) | zn = 1

} ' U(n) (40)

SU(n)× U(1){
(z, z) | zn = 1

} . (41)

The groups (38) and (39) are both product groups, so we can get a faithful rep-
resentation of each one by taking the direct sum of faithful representations of the
factors.110 If ρn and ρ1 are faithful representations of SU(n) and U(1), then ρn⊗ρ1

is a representation of (40) because it does not distinguish between elements (z∗, z)
with zn = 1, and it is faithful because those are the only elements of the group
SU(n)×U(1) that it maps to the identity. Similarly, ρ∗n⊗ ρ1 is a faithful represen-
tation of (41), where ρ∗n is the dual of ρn.

109Article 92035 cites a reference for the isomorphism (40).
110Section 19 constructed a faithful representation of SU(n)/Zn.
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25 Example: (SU(2)× SU(6))/Z2

Now consider groups of the form

SU(2)× SU(6)

Γ
(42)

with any of these choices for the denominator:

Γ =
{

(1, 1), (−1, 1)
}

Γ =
{

(1, 1), (1,−1)
}

Γ =
{

(1, 1), (−1,−1)
}
.

For the first Γs, the quotient group (42) is

SU(2)

Z2
× SU(6) SU(2)× SU(6)

Z2
, (43)

respectively, where Z2 is an abbreviation for the two-element subgroup of the center
of the respective numerator. The preceding sections illustrated how to construct
faithful representations of groups of the form SU(n)/Zk with Zk ⊂ Z(SU(n)). In
each of the cases (43), elements of the (remaining) centers of the two factors can’t
cancel each other,111 so the tensor product of faithful representations of the factors
gives a faithful representation of the product group.

Now consider the third choice for Γ. In that case, if ρ2 and ρ6 are the defining
representations of SU(2) and SU(6), respectively, then ρ2 ⊗ ρ6 is a faithful repre-
sentation of the quotient group (42). The intuition is similar to the intuition used
in section 19.

111In the first case, this is true because the center of the first factor is trivial. In the second case, this is true because
z = 1 is the only complex number satisfying both z2 = 1 and z3 = 1.
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26 Example: (SU(6)× SU(6))/Z3

Now consider the group
SU(6)× SU(6)

Γ
(44)

where Γ is the three-element sugroup

Γ =
{

(z, z∗) | z3 = 1
}
. (45)

Let ρ6 be the defining representation of SU(6), and let ρ′ be the faithful represen-
tation of SU(6)/Z3 that was constructed in section 20. Then

ρ(g1, g2) =
(
ρ6(g1)⊗ ρ6(g2)

)
⊕ ρ′(g1)⊕ ρ′(g2) (46)

is a faithful representation of (44) when Γ is given by (45). Intuition:

• This representation’s kernel clearly contains Γ.

• A pair (g1, g2) cannot be in the representation’s kernel unless it’s in the kernel
of each term in the direct sum.

• A pair (g1, g2) cannot be in the kernel of ρ6(g1)⊗ ρ6(g2) unless g1 and g2 are
each other’s inverses and are in the center of SU(6).

• A pair (g1, g2) cannot be in the kernels of ρ′(g1) and ρ′(g2) unless g1 and g2

are both in the Z3 subgroup of the center of SU(6).

Altogether, this implies that the kernel of the representation (46) is equal to (45),
so this is a faithful representation of (44).
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27 Example: (U(1)× U(1))/Zn
This section constructs faithful representations of groups of the form

U(1)× U(1)

Γ
, (47)

with either of these choices for Γ:

Γ =
{

(z∗, z) | zn = 1
}

(48)

Γ =
{

(z, z) | zn = 1
}
. (49)

We can think of U(1)× U(1) as the group of matrixes of the form

(eiθ, eiφ) ≡
(
eiθ 0
0 eiφ

)
for all θ, φ ∈ R. We can construct a representation of (47) by giving a homomor-
phism from U(1)× U(1) to itself whose kernel is precisely Γ. The homomorphism
defined by

(eiθ, eiφ)→ (einθ, ei(φ+θ)) (50)

has this property when Γ is given by (48), and the homomorphism defined by

(eiθ, eiφ)→ (einθ, ei(φ−θ)) (51)

has this property when Γ is given by (49). These show that the quotient groups
(47) are isomorphic to U(1) × U(1) itself, even though they are both realized as
proper subgroups of the original U(1)× U(1) when n > 1.

When n = 1, the homomorphisms (50) and (51) are each other’s inverses: their
composition is the identity transformation. This shows that the n = 1 versions of
(50) and (51) are automorphisms of U(1)× U(1) (isomorphisms with itself), even
though they don’t preserve the original product structure.

34



cphysics.org article 90757 2024-12-04

28 Example: (SU(3)× SU(2)× U(1)× U(1))/Γ

Now consider the group

SU(3)× SU(2)× U(1)× U(1)

Γ
(52)

with
Γ =

{
(a∗, b∗, az∗, bz) | a3 = 1, b2 = 1, z5 = 1

}
. (53)

Let ρ3, ρ2, ρ1 be the defining representations of SU(3), SU(2), and U(1). Then the
representation of (52) defined by112

ρ(g, h, z, z′) =
(
ρ3(g)⊗ ρ2(h)⊗ ρ1(z)⊗ ρ1(z

′)
)

⊕
((
ρ3(g)

)5 ⊗
(
ρ1(z)

)5
)

⊕
((
ρ2(h)

)5 ⊗
(
ρ1(z

′)
)5
)

(54)

is faithful. Intuition:

• This representation’s kernel clearly contains Γ.

• (g, h, z, z′) cannot be in the representation’s kernel unless it’s in the kernel of
each term in the direct sum.

• (g, h, z, z′) cannot be in the kernel of the first term in the direct sum unless
g ∈ Z(SU(3)), h ∈ Z(SU(2)), and ghzz′ = 1.113

• (g, h, z, z′) cannot be in the kernels of the second and third terms in the direct
sum unless unless g ∈ Z(SU(3)), h ∈ Z(SU(2)), (gz)5 = 1, and (hz′)5 = 1.

Altogether, this implies that the kernel of the representation (54) is equal to (53),
so this is a faithful representation of (52).

112Equation (54) uses the abbreviation M5 for the tensor product of 5 copies of M .
113I’m using the same symbol for an element of the center and the overall complex coefficient of the otherwise-identity

matrix that represents that element of the center (section 8).
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